找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis of the Bergman Kernel and Metric; Steven G. Krantz Textbook 2013 Springer Science+Business Media New York 2013 Bergman

[復制鏈接]
查看: 48586|回復: 35
樓主
發(fā)表于 2025-3-21 16:24:32 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Analysis of the Bergman Kernel and Metric
編輯Steven G. Krantz
視頻videohttp://file.papertrans.cn/384/383453/383453.mp4
概述Several topics are presented for the first time in book form.Textbook for graduate students that will also benefit seasoned researchers in mathematics.Includes illustrative examples and carefully chos
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Geometric Analysis of the Bergman Kernel and Metric;  Steven G. Krantz Textbook 2013 Springer Science+Business Media New York 2013 Bergman
描述This text provides a masterful and systematic treatment of all the basic analytic and geometric aspects of Bergman‘s classic theory of the kernel and its invariance properties. These include calculation, invariance properties, boundary asymptotics, and asymptotic expansion of the Bergman kernel and metric. Moreover, it presents a unique compendium of results with applications to function theory, geometry, partial differential equations, and interpretations in the language of functional analysis, with emphasis on the several complex variables context. Several of these topics appear here for the first time in book form. Each chapter includes illustrative examples and a collection of exercises which will be of interest to both graduate students and experienced mathematicians..Graduate students who have taken courses in complex variables.and have a basic background in real and functional analysis will find this textbook appealing. Applicable courses for either main or supplementary usage include those in complex variables, several complex variables, complex differential geometry, and partial differential equations. Researchers in complex analysis, harmonic analysis, PDEs, and complex d
出版日期Textbook 2013
關(guān)鍵詞Bergman kernel; Bergman metric; Bergman theory; applications to Bergman; holomorphic mapping; integral fo
版次1
doihttps://doi.org/10.1007/978-1-4614-7924-6
isbn_softcover978-1-4939-4429-3
isbn_ebook978-1-4614-7924-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 2013
The information of publication is updating

書目名稱Geometric Analysis of the Bergman Kernel and Metric影響因子(影響力)




書目名稱Geometric Analysis of the Bergman Kernel and Metric影響因子(影響力)學科排名




書目名稱Geometric Analysis of the Bergman Kernel and Metric網(wǎng)絡公開度




書目名稱Geometric Analysis of the Bergman Kernel and Metric網(wǎng)絡公開度學科排名




書目名稱Geometric Analysis of the Bergman Kernel and Metric被引頻次




書目名稱Geometric Analysis of the Bergman Kernel and Metric被引頻次學科排名




書目名稱Geometric Analysis of the Bergman Kernel and Metric年度引用




書目名稱Geometric Analysis of the Bergman Kernel and Metric年度引用學科排名




書目名稱Geometric Analysis of the Bergman Kernel and Metric讀者反饋




書目名稱Geometric Analysis of the Bergman Kernel and Metric讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:25:19 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:51:14 | 只看該作者
Discourses of Freedom of Speechrtling, is in fact completely analogous to the result in the Riemannian geometry regarding geodesic normal coordinates. But geodesic normal coordinates are almost never holomorphic—unless the K?hler metric is flat.
地板
發(fā)表于 2025-3-22 08:33:42 | 只看該作者
5#
發(fā)表于 2025-3-22 10:49:47 | 只看該作者
6#
發(fā)表于 2025-3-22 13:39:06 | 只看該作者
7#
發(fā)表于 2025-3-22 20:19:52 | 只看該作者
0072-5285 ry usage include those in complex variables, several complex variables, complex differential geometry, and partial differential equations. Researchers in complex analysis, harmonic analysis, PDEs, and complex d978-1-4939-4429-3978-1-4614-7924-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
8#
發(fā)表于 2025-3-23 00:28:11 | 只看該作者
9#
發(fā)表于 2025-3-23 05:08:10 | 只看該作者
10#
發(fā)表于 2025-3-23 06:26:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
常宁市| 汶川县| 左贡县| 当阳市| 繁峙县| 滨州市| 句容市| 高青县| 柳河县| 嘉义市| 沾益县| 保康县| 微博| 称多县| 桂平市| 思茅市| 察隅县| 临澧县| 屏边| 惠来县| 通辽市| 平武县| 读书| 贵阳市| 永昌县| 常熟市| 大邑县| 花莲县| 抚顺县| 宜都市| 团风县| 江北区| 兴业县| 广东省| 聂拉木县| 新竹县| 马尔康县| 城步| 平谷区| 长海县| 澄城县|