找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis of the Bergman Kernel and Metric; Steven G. Krantz Textbook 2013 Springer Science+Business Media New York 2013 Bergman

[復(fù)制鏈接]
樓主: Ensign
11#
發(fā)表于 2025-3-23 13:16:56 | 只看該作者
The Bergman Metric,ing theorem (at least in the traditional sense) in several complex variables. More recent results of Burns, Shnider, and Wells [BSW] and of Greene and Krantz [GRK1, GRK2] confirm how truly dismal the situation is. First, we need a definition.
12#
發(fā)表于 2025-3-23 14:36:54 | 只看該作者
13#
發(fā)表于 2025-3-23 19:34:43 | 只看該作者
Further Geometric Explorations,composition of mappings. The standard topology on this group is uniform convergence on compact sets, or the compact-open topology. We denote the automorphism group by .. When . is a bounded domain, the group . is a real (never a complex) Lie group.
14#
發(fā)表于 2025-3-23 22:45:21 | 只看該作者
15#
發(fā)表于 2025-3-24 04:07:19 | 只看該作者
978-1-4939-4429-3Springer Science+Business Media New York 2013
16#
發(fā)表于 2025-3-24 06:45:22 | 只看該作者
Geometric Analysis of the Bergman Kernel and Metric978-1-4614-7924-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
17#
發(fā)表于 2025-3-24 11:53:41 | 只看該作者
18#
發(fā)表于 2025-3-24 16:47:11 | 只看該作者
Discourses of Ageing in Fiction and Feminismtly studied a . complete, infinite-dimensional space from a more abstract point of view. The most common space to be studied in this regard was of course . .. It was when Stefan Bergman took a course from Erhard Schmidt on . . of the unit interval . that he conceived of the idea of the Bergman space
19#
發(fā)表于 2025-3-24 19:52:06 | 只看該作者
20#
發(fā)表于 2025-3-25 02:31:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安溪县| 鹰潭市| 衡阳市| 响水县| 安吉县| 门源| 炉霍县| 松滋市| 浮梁县| 凤山市| 博爱县| 榕江县| 定襄县| 和顺县| 常宁市| 神农架林区| 准格尔旗| 应用必备| 荣成市| 柘城县| 布拖县| 拉孜县| 右玉县| 邵武市| 四平市| 永康市| 邢台市| 鄂尔多斯市| 罗定市| 宣恩县| 天门市| 进贤县| 大连市| 汤原县| 洞头县| 诸暨市| 尼玛县| 东安县| 安义县| 库尔勒市| 吉林省|