找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis of the Bergman Kernel and Metric; Steven G. Krantz Textbook 2013 Springer Science+Business Media New York 2013 Bergman

[復(fù)制鏈接]
樓主: Ensign
11#
發(fā)表于 2025-3-23 13:16:56 | 只看該作者
The Bergman Metric,ing theorem (at least in the traditional sense) in several complex variables. More recent results of Burns, Shnider, and Wells [BSW] and of Greene and Krantz [GRK1, GRK2] confirm how truly dismal the situation is. First, we need a definition.
12#
發(fā)表于 2025-3-23 14:36:54 | 只看該作者
13#
發(fā)表于 2025-3-23 19:34:43 | 只看該作者
Further Geometric Explorations,composition of mappings. The standard topology on this group is uniform convergence on compact sets, or the compact-open topology. We denote the automorphism group by .. When . is a bounded domain, the group . is a real (never a complex) Lie group.
14#
發(fā)表于 2025-3-23 22:45:21 | 只看該作者
15#
發(fā)表于 2025-3-24 04:07:19 | 只看該作者
978-1-4939-4429-3Springer Science+Business Media New York 2013
16#
發(fā)表于 2025-3-24 06:45:22 | 只看該作者
Geometric Analysis of the Bergman Kernel and Metric978-1-4614-7924-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
17#
發(fā)表于 2025-3-24 11:53:41 | 只看該作者
18#
發(fā)表于 2025-3-24 16:47:11 | 只看該作者
Discourses of Ageing in Fiction and Feminismtly studied a . complete, infinite-dimensional space from a more abstract point of view. The most common space to be studied in this regard was of course . .. It was when Stefan Bergman took a course from Erhard Schmidt on . . of the unit interval . that he conceived of the idea of the Bergman space
19#
發(fā)表于 2025-3-24 19:52:06 | 只看該作者
20#
發(fā)表于 2025-3-25 02:31:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿坝县| 南投市| 洪湖市| 肇庆市| 金山区| 瑞昌市| 高密市| 湖州市| 海晏县| 章丘市| 奉节县| 台东县| 文成县| 桑日县| 云安县| 葫芦岛市| 平泉县| 青州市| 边坝县| 舒兰市| 甘孜县| 涿州市| 壶关县| 通化县| 南木林县| 新民市| 大英县| 察隅县| 隆化县| 义马市| 集安市| 建昌县| 太湖县| 广东省| 卓资县| 梅河口市| 丹棱县| 金堂县| 都江堰市| 台湾省| 专栏|