找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Equimultiplicity and Blowing Up; An Algebraic Study Manfred Herrmann,Ulrich Orbanz,Shin Ikeda Book 1988 Springer-Verlag Berlin Heidelberg 1

[復(fù)制鏈接]
樓主: sustained
31#
發(fā)表于 2025-3-27 00:23:54 | 只看該作者
32#
發(fā)表于 2025-3-27 01:44:56 | 只看該作者
Various Notions of Equimultiple and Permissible Ideals,et (R,m) be a local ring and let p be a prime ideal of R. Recall that, by definition (10.10), s(p) ? 1 is the dimension of the fibre of the morphism . at the closed point m of Spec(R) (this fibre being Proj (G(p,R)?.R/m) . Likewise, if q is any prime ideal of R containing p, then s(pR.) ? 1 is the d
33#
發(fā)表于 2025-3-27 09:06:06 | 只看該作者
34#
發(fā)表于 2025-3-27 09:37:40 | 只看該作者
35#
發(fā)表于 2025-3-27 14:27:19 | 只看該作者
36#
發(fā)表于 2025-3-27 18:55:16 | 只看該作者
Generalized Cohen-Macaulay Rings and Blowing Up,ometry frequently. For example, if X?.. is an irreducible, non-singular projective variety over a field k, then the local ring at the vertex of the affine cone over X satisfies this property (cf. Hartshorne [1]; see also the remark at the end of § 35 in Chapter VII). The purpose of this chapter is t
37#
發(fā)表于 2025-3-27 23:52:11 | 只看該作者
38#
發(fā)表于 2025-3-28 04:56:47 | 只看該作者
Nonautonomous Dynamical Systems,in the study of the numerical behaviour of singularities under blowing up singular centers. In this Chapter V we want to show that these conditions are also of some use to investigate Cohen-Macaulay properties under blowing up, which are essential for the local and global study of algebraic varietie
39#
發(fā)表于 2025-3-28 06:51:56 | 只看該作者
40#
發(fā)表于 2025-3-28 10:41:09 | 只看該作者
Book 1988y for complex analytic spaces is given a geometric interpretation and its equivalence to the algebraic notion is explained. The book is primarily addressed to specialists in the subject but the self-contained and unified presentation of numerous earlier results make it accessible to graduate student
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 15:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
六盘水市| 当涂县| 永胜县| 洛浦县| 广水市| 奎屯市| 嘉义市| 南和县| 崇明县| 怀安县| 金塔县| 博白县| 榕江县| 朝阳县| 洛扎县| 汝阳县| 万全县| 铜鼓县| 丹东市| 库尔勒市| 五原县| 紫云| 灵川县| 金山区| 洪湖市| 宽甸| 桐城市| 丰都县| 图木舒克市| 南丹县| 永年县| 秭归县| 荥阳市| 白朗县| 墨玉县| 安国市| 新乐市| 襄樊市| 平舆县| 荣昌县| 锦屏县|