找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Equimultiplicity and Blowing Up; An Algebraic Study Manfred Herrmann,Ulrich Orbanz,Shin Ikeda Book 1988 Springer-Verlag Berlin Heidelberg 1

[復(fù)制鏈接]
查看: 9214|回復(fù): 43
樓主
發(fā)表于 2025-3-21 17:47:59 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Equimultiplicity and Blowing Up
副標(biāo)題An Algebraic Study
編輯Manfred Herrmann,Ulrich Orbanz,Shin Ikeda
視頻videohttp://file.papertrans.cn/314/313500/313500.mp4
圖書封面Titlebook: Equimultiplicity and Blowing Up; An Algebraic Study Manfred Herrmann,Ulrich Orbanz,Shin Ikeda Book 1988 Springer-Verlag Berlin Heidelberg 1
描述.Content and Subject Matter:. This research monograph deals with two main subjects, namely the notion of equimultiplicity and the algebraic study of various graded rings in relation to blowing ups. Both subjects are clearly motivated by their use in resolving singularities of algebraic varieties, for which one of the main tools consists in blowing up the variety along an equimultiple subvariety. For equimultiplicity a unified and self-contained treatment of earlier results of two of the authors is given, establishing a notion of equimultiplicity for situations other than the classical ones. For blowing up, new results are presented on the connection with generalized Cohen-Macaulay rings. To keep this part self-contained too, a section on local cohomology and local duality for graded rings and modules is included with detailed proofs. Finally, in an appendix, the notion of equimultiplicity for complex analytic spaces is given a geometric interpretation and its equivalence to the algebraic notion is explained. The book is primarily addressed to specialists in the subject but the self-contained and unified presentation of numerous earlier results make it accessible to graduate student
出版日期Book 1988
關(guān)鍵詞Blowing up; Dimension; Divisor; Equivalence; Grad; Grothendieck topology; algebra; algebraic varieties; coho
版次1
doihttps://doi.org/10.1007/978-3-642-61349-4
isbn_softcover978-3-642-64803-8
isbn_ebook978-3-642-61349-4
copyrightSpringer-Verlag Berlin Heidelberg 1988
The information of publication is updating

書目名稱Equimultiplicity and Blowing Up影響因子(影響力)




書目名稱Equimultiplicity and Blowing Up影響因子(影響力)學(xué)科排名




書目名稱Equimultiplicity and Blowing Up網(wǎng)絡(luò)公開度




書目名稱Equimultiplicity and Blowing Up網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Equimultiplicity and Blowing Up被引頻次




書目名稱Equimultiplicity and Blowing Up被引頻次學(xué)科排名




書目名稱Equimultiplicity and Blowing Up年度引用




書目名稱Equimultiplicity and Blowing Up年度引用學(xué)科排名




書目名稱Equimultiplicity and Blowing Up讀者反饋




書目名稱Equimultiplicity and Blowing Up讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:26:43 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:08:42 | 只看該作者
https://doi.org/10.1007/978-1-4939-2247-5et (R,m) be a local ring and let p be a prime ideal of R. Recall that, by definition (10.10), s(p) ? 1 is the dimension of the fibre of the morphism . at the closed point m of Spec(R) (this fibre being Proj (G(p,R)?.R/m) . Likewise, if q is any prime ideal of R containing p, then s(pR.) ? 1 is the d
地板
發(fā)表于 2025-3-22 05:59:34 | 只看該作者
5#
發(fā)表于 2025-3-22 11:47:06 | 只看該作者
6#
發(fā)表于 2025-3-22 13:24:35 | 只看該作者
7#
發(fā)表于 2025-3-22 20:18:09 | 只看該作者
Springer Series in Reliability Engineeringometry frequently. For example, if X?.. is an irreducible, non-singular projective variety over a field k, then the local ring at the vertex of the affine cone over X satisfies this property (cf. Hartshorne [1]; see also the remark at the end of § 35 in Chapter VII). The purpose of this chapter is t
8#
發(fā)表于 2025-3-23 00:53:43 | 只看該作者
9#
發(fā)表于 2025-3-23 04:11:53 | 只看該作者
http://image.papertrans.cn/e/image/313500.jpg
10#
發(fā)表于 2025-3-23 07:42:21 | 只看該作者
What Is Natural Language Processing?,In this chapter we collect all the basic facts about multiplicities, Hilbert functions and reductions of ideals. At the same time we will introduce the notations to be used throughout the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 17:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
星子县| 越西县| 太和县| 广元市| 民勤县| 武乡县| 遵义市| 莱西市| 梅河口市| 佳木斯市| 郸城县| 长沙市| 筠连县| 彭泽县| 镇安县| 安阳县| 庆城县| 新田县| 芜湖市| 秀山| 梁平县| 江都市| 珲春市| 桃园市| 玉林市| 青铜峡市| 津市市| 军事| 娄底市| 汉源县| 仁化县| 衡南县| 华蓥市| 蓬安县| 原平市| 新田县| 夏邑县| 巫山县| 沙洋县| 宝山区| 余干县|