找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Equimultiplicity and Blowing Up; An Algebraic Study Manfred Herrmann,Ulrich Orbanz,Shin Ikeda Book 1988 Springer-Verlag Berlin Heidelberg 1

[復(fù)制鏈接]
樓主: sustained
11#
發(fā)表于 2025-3-23 10:00:31 | 只看該作者
Review of Multiplicity Theory,In this chapter we collect all the basic facts about multiplicities, Hilbert functions and reductions of ideals. At the same time we will introduce the notations to be used throughout the book.
12#
發(fā)表于 2025-3-23 17:13:39 | 只看該作者
13#
發(fā)表于 2025-3-23 18:49:47 | 只看該作者
978-3-642-64803-8Springer-Verlag Berlin Heidelberg 1988
14#
發(fā)表于 2025-3-23 22:19:55 | 只看該作者
15#
發(fā)表于 2025-3-24 02:46:51 | 只看該作者
16#
發(fā)表于 2025-3-24 10:00:44 | 只看該作者
17#
發(fā)表于 2025-3-24 11:02:15 | 只看該作者
Local Cohomology and Duality of Graded Rings,most results in this chapter hold for any noetherian ring or any noetherian local ring R by regarding R as a graded ring with the trivial grading R. = R and R. = 0 for n ≠ 0. On the other hand our theory of graded rings can be extended to any ..-graded rings as Goto and Watanabe have done in [17].
18#
發(fā)表于 2025-3-24 18:04:42 | 只看該作者
19#
發(fā)表于 2025-3-24 23:00:47 | 只看該作者
Petr Kaplicky,Josef Málek,Jana Staráves. Finally for inequalities of Hilbert functions under blowing up other centers one has to apply this semicontinuity. The last Section 32 is related to equisingularity theory via flat families. As before (R,m,k) is again a noetherian local ring and I a proper ideal of R.
20#
發(fā)表于 2025-3-25 00:17:45 | 只看該作者
https://doi.org/10.1007/978-1-4614-2236-5ohomology, see main Theorem (44.1). Then we ask this question for Rees rings of equimultiple ideals I, in particular of m-primary ideals and of ideals q and q., where q is generated by a system of parameters.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 17:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辰溪县| 岳阳县| 中宁县| 云南省| 芒康县| 胶南市| 湟源县| 丹江口市| 文昌市| 海兴县| 新源县| 浠水县| 浑源县| 霞浦县| 麦盖提县| 剑河县| 财经| 利辛县| 伽师县| 如东县| 临桂县| 武山县| 当涂县| 贞丰县| 乌什县| 朔州市| 松阳县| 景洪市| 峨眉山市| 枞阳县| 凤阳县| 孟州市| 洱源县| 桂平市| 嘉荫县| 永定县| 沁阳市| 九江县| 高州市| 南召县| 上思县|