找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Equimultiplicity and Blowing Up; An Algebraic Study Manfred Herrmann,Ulrich Orbanz,Shin Ikeda Book 1988 Springer-Verlag Berlin Heidelberg 1

[復(fù)制鏈接]
樓主: sustained
31#
發(fā)表于 2025-3-27 00:23:54 | 只看該作者
32#
發(fā)表于 2025-3-27 01:44:56 | 只看該作者
Various Notions of Equimultiple and Permissible Ideals,et (R,m) be a local ring and let p be a prime ideal of R. Recall that, by definition (10.10), s(p) ? 1 is the dimension of the fibre of the morphism . at the closed point m of Spec(R) (this fibre being Proj (G(p,R)?.R/m) . Likewise, if q is any prime ideal of R containing p, then s(pR.) ? 1 is the d
33#
發(fā)表于 2025-3-27 09:06:06 | 只看該作者
34#
發(fā)表于 2025-3-27 09:37:40 | 只看該作者
35#
發(fā)表于 2025-3-27 14:27:19 | 只看該作者
36#
發(fā)表于 2025-3-27 18:55:16 | 只看該作者
Generalized Cohen-Macaulay Rings and Blowing Up,ometry frequently. For example, if X?.. is an irreducible, non-singular projective variety over a field k, then the local ring at the vertex of the affine cone over X satisfies this property (cf. Hartshorne [1]; see also the remark at the end of § 35 in Chapter VII). The purpose of this chapter is t
37#
發(fā)表于 2025-3-27 23:52:11 | 只看該作者
38#
發(fā)表于 2025-3-28 04:56:47 | 只看該作者
Nonautonomous Dynamical Systems,in the study of the numerical behaviour of singularities under blowing up singular centers. In this Chapter V we want to show that these conditions are also of some use to investigate Cohen-Macaulay properties under blowing up, which are essential for the local and global study of algebraic varietie
39#
發(fā)表于 2025-3-28 06:51:56 | 只看該作者
40#
發(fā)表于 2025-3-28 10:41:09 | 只看該作者
Book 1988y for complex analytic spaces is given a geometric interpretation and its equivalence to the algebraic notion is explained. The book is primarily addressed to specialists in the subject but the self-contained and unified presentation of numerous earlier results make it accessible to graduate student
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 15:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
濉溪县| 临邑县| 伽师县| 恩施市| 平顶山市| 正定县| 封丘县| 青神县| 墨竹工卡县| 砚山县| 望奎县| 临西县| 尚义县| 女性| 汉川市| 银川市| 德化县| 喀什市| 镶黄旗| 蓝山县| 吉林省| 儋州市| 沾益县| 宜兰县| 封丘县| 广丰县| 昭通市| 昌平区| 溧阳市| 射洪县| 合作市| 台安县| 垦利县| 钦州市| 丰顺县| 宜都市| 阳春市| 韶关市| 隆安县| 耒阳市| 衢州市|