找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Equimultiplicity and Blowing Up; An Algebraic Study Manfred Herrmann,Ulrich Orbanz,Shin Ikeda Book 1988 Springer-Verlag Berlin Heidelberg 1

[復制鏈接]
樓主: sustained
11#
發(fā)表于 2025-3-23 10:00:31 | 只看該作者
Review of Multiplicity Theory,In this chapter we collect all the basic facts about multiplicities, Hilbert functions and reductions of ideals. At the same time we will introduce the notations to be used throughout the book.
12#
發(fā)表于 2025-3-23 17:13:39 | 只看該作者
13#
發(fā)表于 2025-3-23 18:49:47 | 只看該作者
978-3-642-64803-8Springer-Verlag Berlin Heidelberg 1988
14#
發(fā)表于 2025-3-23 22:19:55 | 只看該作者
15#
發(fā)表于 2025-3-24 02:46:51 | 只看該作者
16#
發(fā)表于 2025-3-24 10:00:44 | 只看該作者
17#
發(fā)表于 2025-3-24 11:02:15 | 只看該作者
Local Cohomology and Duality of Graded Rings,most results in this chapter hold for any noetherian ring or any noetherian local ring R by regarding R as a graded ring with the trivial grading R. = R and R. = 0 for n ≠ 0. On the other hand our theory of graded rings can be extended to any ..-graded rings as Goto and Watanabe have done in [17].
18#
發(fā)表于 2025-3-24 18:04:42 | 只看該作者
19#
發(fā)表于 2025-3-24 23:00:47 | 只看該作者
Petr Kaplicky,Josef Málek,Jana Staráves. Finally for inequalities of Hilbert functions under blowing up other centers one has to apply this semicontinuity. The last Section 32 is related to equisingularity theory via flat families. As before (R,m,k) is again a noetherian local ring and I a proper ideal of R.
20#
發(fā)表于 2025-3-25 00:17:45 | 只看該作者
https://doi.org/10.1007/978-1-4614-2236-5ohomology, see main Theorem (44.1). Then we ask this question for Rees rings of equimultiple ideals I, in particular of m-primary ideals and of ideals q and q., where q is generated by a system of parameters.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 17:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
佛山市| 龙海市| 盖州市| 溧水县| 合水县| 罗山县| 上饶市| 桑日县| 和田县| 广灵县| 台江县| 张北县| 南丰县| 汉沽区| 体育| 九江县| 霍城县| 内江市| 遂川县| 镇沅| 潍坊市| 天柱县| 武乡县| 永兴县| 策勒县| 花莲县| 梁山县| 海兴县| 长沙市| 白河县| 新竹县| 光泽县| 富平县| 景东| 额济纳旗| 隆安县| 锦屏县| 雷山县| 周至县| 昌吉市| 塔河县|