找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry, Graphs, and Games; 21st Japanese Confer Jin Akiyama,Reginaldo M. Marcelo,Yushi Uno Conference proceedi

[復制鏈接]
樓主: 正當理由
41#
發(fā)表于 2025-3-28 18:20:26 | 只看該作者
42#
發(fā)表于 2025-3-28 18:55:56 | 只看該作者
https://doi.org/10.1007/978-3-030-90048-9communication systems; computer hardware; computer networks; computer science; computer systems; computer
43#
發(fā)表于 2025-3-28 22:54:25 | 只看該作者
44#
發(fā)表于 2025-3-29 04:18:07 | 只看該作者
45#
發(fā)表于 2025-3-29 09:58:54 | 只看該作者
46#
發(fā)表于 2025-3-29 12:59:23 | 只看該作者
47#
發(fā)表于 2025-3-29 15:37:41 | 只看該作者
,On Geometric Graphs on Point Sets in?the Plane,er we survey several results on geometric graphs on colored point sets. Of particular interest are bicolored point sets . in which the elements of . can considered to be colored red or blue. We will pay particular attention to perfect matchings, spanning trees and paths whose vertex sets are colored
48#
發(fā)表于 2025-3-29 19:48:50 | 只看該作者
Negative Instance for the Edge Patrolling Beacon Problem,and the ball is a point always moving instantaneously and maximally toward the beacon subject to staying nonstrictly within the same polygon? Kouhestani and Rappaport [JCDCG 2017] gave an algorithm for determining whether a ball-capturing beacon strategy exists, while conjecturing that such a strate
49#
發(fā)表于 2025-3-30 00:16:52 | 只看該作者
,The Metric Dimension of the Join of?Paths and Cycles,ere . is the distance of the vertices . and . in .. The set . is called a resolving set of . if . implies .. A resolving set of . with minimum cardinality is called a metric basis of .. The metric dimension of ., denoted by ., is the cardinality of a metric basis of ...The . of . and ., denoted by .
50#
發(fā)表于 2025-3-30 07:42:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 01:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
尼木县| 江源县| 兴城市| 江达县| 津南区| 湟源县| 正蓝旗| 谢通门县| 安图县| 高淳县| 科技| 观塘区| 慈利县| 乡宁县| 马公市| 昭觉县| 旌德县| 绥德县| 永嘉县| 开阳县| 阜宁县| 南木林县| 颍上县| 通海县| 象山县| 蓬安县| 怀来县| 宜黄县| 东乡族自治县| 若羌县| 镇江市| 安义县| 诏安县| 峨眉山市| 深泽县| 岳西县| 兴业县| 喜德县| 九寨沟县| 皋兰县| 莱阳市|