找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry, Graphs, and Games; 21st Japanese Confer Jin Akiyama,Reginaldo M. Marcelo,Yushi Uno Conference proceedi

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:34:21 | 只看該作者
https://doi.org/10.1007/978-1-4615-0603-4 of reactions with the same reactant complex are identical. As illustration, we considered a scenario in the pre-industrial state of global carbon cycle. A power-law approximation of the dynamical system of this scenario is found to be dynamically equivalent to an ACR-possessing PL-RDK system.
12#
發(fā)表于 2025-3-23 15:03:28 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:51 | 只看該作者
Robustness in Power-Law Kinetic Systems with Reactant-Determined Interactions, of reactions with the same reactant complex are identical. As illustration, we considered a scenario in the pre-industrial state of global carbon cycle. A power-law approximation of the dynamical system of this scenario is found to be dynamically equivalent to an ACR-possessing PL-RDK system.
14#
發(fā)表于 2025-3-24 02:13:33 | 只看該作者
0302-9743 etry and Graphs, JCDCGGG 2018, held in Quezon City, Philippines, in September 2018.. The total of 14 papers included in this volume was carefully reviewed and selected from 25 submissions. The papers feature advances made in the field of computational geometry and focus on emerging technologies, new
15#
發(fā)表于 2025-3-24 04:28:35 | 只看該作者
16#
發(fā)表于 2025-3-24 10:32:55 | 只看該作者
https://doi.org/10.1007/978-3-642-21308-3ni and Rappaport [JCDCG 2017] gave an algorithm for determining whether a ball-capturing beacon strategy exists, while conjecturing that such a strategy always exists. We disprove this conjecture by constructing orthogonal and general-position polygons in which the ball and the beacon can never be united.
17#
發(fā)表于 2025-3-24 13:08:57 | 只看該作者
18#
發(fā)表于 2025-3-24 18:47:08 | 只看該作者
19#
發(fā)表于 2025-3-24 21:58:50 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 04:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福建省| 高平市| 天全县| 永昌县| 寿阳县| 磐安县| 新昌县| 洛南县| 阜新市| 连城县| 新源县| 万盛区| 克拉玛依市| 剑阁县| 开封县| 五寨县| 河东区| 清河县| 合水县| 金川县| 沛县| 潢川县| 和平县| 巫山县| 玉山县| 邳州市| 惠东县| 沙田区| 吉木乃县| 荥经县| 乌什县| 雷州市| 景洪市| 锦州市| 拜城县| 句容市| 应用必备| 荔浦县| 敖汉旗| 莱州市| 梓潼县|