找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Desingularization: Invariants and Strategy; Application to Dimen Vincent Cossart,Uwe Jannsen,Shuji Saito Book 2020 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Bunion
11#
發(fā)表于 2025-3-23 10:28:50 | 只看該作者
https://doi.org/10.1007/978-3-322-96526-4In this chapter we prove the Key Theorem . in Chap. ., by deducing it from a stronger result, Theorem 10.2 below. Moreover we will give an explicit bound on the length of the fundamental sequence, by the .-invariant of the polyhedron at the beginning. First we introduce a basic setup.
12#
發(fā)表于 2025-3-23 13:58:25 | 只看該作者
J?rg H?ppner,Dieter Feige,Werner DelfmannIn order to show key Theorem . in Chap. ., we recall further invariants for singularities, which were defined by Hironaka. The definition works for any dimension, as long as the directrix is 2-dimensional.
13#
發(fā)表于 2025-3-23 19:25:40 | 只看該作者
J?rg H?ppner,Dieter Feige,Werner DelfmannIn this chapter we prepare some key lemmas for the proof of Theorem ..
14#
發(fā)表于 2025-3-23 23:31:35 | 只看該作者
https://doi.org/10.1007/978-3-322-96526-4In this chapter we prove Theorem 13.7 below, which implies Key Theorem . under the assumption that the residue fields of the initial points of . are separably algebraic over that of .. The proof is divided into two steps.
15#
發(fā)表于 2025-3-24 03:24:48 | 只看該作者
J?rg H?ppner,Dieter Feige,Werner DelfmannIn this chapter we complete the proof of key Theorem . (see Theorem 14.4 below).
16#
發(fā)表于 2025-3-24 09:11:03 | 只看該作者
17#
發(fā)表于 2025-3-24 14:19:57 | 只看該作者
18#
發(fā)表于 2025-3-24 15:28:47 | 只看該作者
19#
發(fā)表于 2025-3-24 22:44:05 | 只看該作者
20#
發(fā)表于 2025-3-25 03:00:56 | 只看該作者
Basic Invariants for Singularities,In this chapter we introduce some basic invariants for singularities.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
文化| 资讯 | 阳新县| 建平县| 高雄市| 思南县| 贡山| 凤山县| 宜州市| 偏关县| 敦煌市| 天门市| 高青县| 抚宁县| 邢台市| 隆林| 光山县| 新干县| 平安县| 宿迁市| 雅安市| 鹤壁市| 水富县| 洞口县| 区。| 吴旗县| 津市市| 新平| 富裕县| 青海省| 射洪县| 新乡县| 桐城市| 渝中区| 恩施市| 淮阳县| 金寨县| 临邑县| 上蔡县| 鄂托克前旗| 宣威市|