找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Desingularization: Invariants and Strategy; Application to Dimen Vincent Cossart,Uwe Jannsen,Shuji Saito Book 2020 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Bunion
21#
發(fā)表于 2025-3-25 04:24:03 | 只看該作者
22#
發(fā)表于 2025-3-25 09:29:26 | 只看該作者
23#
發(fā)表于 2025-3-25 14:11:35 | 只看該作者
24#
發(fā)表于 2025-3-25 16:39:51 | 只看該作者
,Characteristic Polyhedra of ,???,,In this chapter we are always in Setup A (beginning of Chap. .). We introduce a polyhedron Δ(., .) which plays a crucial role in this monograph. It will provide us with useful invariants of singularities of Spec(.∕.) (see Chap. .). It also give us a natural way to transform a (.)-standard base of . into a standard base of . (see Corollary 8.26).
25#
發(fā)表于 2025-3-25 22:40:22 | 只看該作者
26#
發(fā)表于 2025-3-26 03:53:55 | 只看該作者
,Termination of the Fundamental Sequences of ,-Permissible Blow-Ups, and the Case ,,(,)?=?1,In this chapter we prove the Key Theorem . in Chap. ., by deducing it from a stronger result, Theorem 10.2 below. Moreover we will give an explicit bound on the length of the fundamental sequence, by the .-invariant of the polyhedron at the beginning. First we introduce a basic setup.
27#
發(fā)表于 2025-3-26 07:13:21 | 只看該作者
,Additional Invariants in the Case ,,(,)?=?2,In order to show key Theorem . in Chap. ., we recall further invariants for singularities, which were defined by Hironaka. The definition works for any dimension, as long as the directrix is 2-dimensional.
28#
發(fā)表于 2025-3-26 11:54:36 | 只看該作者
29#
發(fā)表于 2025-3-26 16:36:48 | 只看該作者
30#
發(fā)表于 2025-3-26 19:17:26 | 只看該作者
,Proof in the Case ,,(,)?=?,,(,)?=?2 , III: Inseparable Residue Extensions,In this chapter we complete the proof of key Theorem . (see Theorem 14.4 below).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 04:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拉萨市| 凤庆县| 通江县| 蒲城县| 吉首市| 湘潭市| 永城市| 元氏县| 富民县| 黄浦区| 高雄县| 正蓝旗| 周口市| 高雄市| 阳高县| 东乡县| 理塘县| 邯郸市| 太仓市| 延津县| 绥江县| 沁源县| 金堂县| 陇西县| 大庆市| 乳山市| 海南省| 梁河县| 贵阳市| 静海县| 潜山县| 临清市| 娄底市| 丹巴县| 个旧市| 鄢陵县| 莱阳市| 安远县| 泗水县| 和平区| 洛浦县|