找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Desingularization: Invariants and Strategy; Application to Dimen Vincent Cossart,Uwe Jannsen,Shuji Saito Book 2020 The Editor(s) (if applic

[復(fù)制鏈接]
查看: 19619|回復(fù): 56
樓主
發(fā)表于 2025-3-21 16:54:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Desingularization: Invariants and Strategy
副標(biāo)題Application to Dimen
編輯Vincent Cossart,Uwe Jannsen,Shuji Saito
視頻videohttp://file.papertrans.cn/270/269084/269084.mp4
概述Provides a complete proof of desingularization of surfaces, and several other well-known results not previously published in the literature.Briefly summarizes the history of the topic, with numerous r
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Desingularization: Invariants and Strategy; Application to Dimen Vincent Cossart,Uwe Jannsen,Shuji Saito Book 2020 The Editor(s) (if applic
描述.This book provides a rigorous and self-contained review of desingularization theory. Focusing on arbitrary dimensional schemes, it discusses the important concepts in full generality, complete with proofs, and includes an introduction to the basis of Hironaka’s Theory.. .The core of the book is a complete proof of desingularization of surfaces; despite being well-known, this result was no more than folklore for many years, with no existing references.?.. .Throughout the book there are numerous computations on standard bases, blowing ups and characteristic polyhedra, which will be a source of inspiration for experts exploring bigger dimensions. Beginners will also benefit from a section which presents some easily overlooked pathologies..
出版日期Book 2020
關(guān)鍵詞Birational; Blowing Up; Characteristic Polyhedron; Desingularization; Singularities
版次1
doihttps://doi.org/10.1007/978-3-030-52640-5
isbn_softcover978-3-030-52639-9
isbn_ebook978-3-030-52640-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Desingularization: Invariants and Strategy影響因子(影響力)




書目名稱Desingularization: Invariants and Strategy影響因子(影響力)學(xué)科排名




書目名稱Desingularization: Invariants and Strategy網(wǎng)絡(luò)公開度




書目名稱Desingularization: Invariants and Strategy網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Desingularization: Invariants and Strategy被引頻次




書目名稱Desingularization: Invariants and Strategy被引頻次學(xué)科排名




書目名稱Desingularization: Invariants and Strategy年度引用




書目名稱Desingularization: Invariants and Strategy年度引用學(xué)科排名




書目名稱Desingularization: Invariants and Strategy讀者反饋




書目名稱Desingularization: Invariants and Strategy讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:23:47 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/d/image/269084.jpg
板凳
發(fā)表于 2025-3-22 02:07:49 | 只看該作者
Desingularization: Invariants and Strategy978-3-030-52640-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
地板
發(fā)表于 2025-3-22 05:10:10 | 只看該作者
5#
發(fā)表于 2025-3-22 09:52:40 | 只看該作者
Peter Klaus,Winfried Krieger,Michael KruppIn this chapter we introduce some basic invariants for singularities.
6#
發(fā)表于 2025-3-22 15:03:41 | 只看該作者
Jürgen Weber,Ottmar Gast,Stephan PinschLet . be a regular scheme and let . be a simple normal crossing divisor on .. For each .?∈?., let . be the subdivisor of . which is the union of the irreducible components of . containing ..
7#
發(fā)表于 2025-3-22 18:31:16 | 只看該作者
8#
發(fā)表于 2025-3-22 22:18:45 | 只看該作者
9#
發(fā)表于 2025-3-23 04:06:56 | 只看該作者
10#
發(fā)表于 2025-3-23 05:45:16 | 只看該作者
https://doi.org/10.1007/978-3-322-96526-4In this chapter we will study the transformation of a standard base under permissible blow-ups, in particular with respect to near points in the blow-up.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 23:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乾安县| 寿阳县| 嘉义县| 金乡县| 江永县| 双流县| 苗栗市| 巫溪县| 梁平县| 龙山县| 关岭| 合山市| 潜江市| 扶余县| 宜宾县| 滁州市| 嘉峪关市| 合阳县| 成武县| 军事| 平江县| 靖江市| 汉中市| 平乡县| 丰都县| 青海省| 寿阳县| 天台县| 桂东县| 尼勒克县| 西充县| 台中县| 彭水| 广河县| 广灵县| 余江县| 荣昌县| 当雄县| 达尔| 西丰县| 辰溪县|