找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Data Labeling for Medical Applications; First International Gustavo Carneiro,Diana Mateus,Julien Cornebise Conference pr

[復(fù)制鏈接]
樓主: interleukins
51#
發(fā)表于 2025-3-30 11:45:27 | 只看該作者
https://doi.org/10.1007/978-3-031-01598-4ing early diagnosis of brain diseases. However, 7T MRI scanners are less accessible, compared to the 3T MRI scanners. This motivates us to reconstruct 7T-like images from 3T MRI. We propose a deep architecture for Convolutional Neural Network (CNN), which uses the . (intensity) and . (labels of brai
52#
發(fā)表于 2025-3-30 15:09:15 | 只看該作者
Designed Technologies for Healthy Agingwork which learns the pixel/voxel-wise mapping between image appearance and registration parameters. Our approach can predict general deformation parameterizations, however, we focus on the large deformation diffeomorphic metric mapping (LDDMM) registration model. By predicting the LDDMM momentum-pa
53#
發(fā)表于 2025-3-30 16:31:29 | 只看該作者
54#
發(fā)表于 2025-3-31 00:35:16 | 只看該作者
https://doi.org/10.1007/978-3-031-01598-4dness. Problematically, the visual indicators of ROP are not well understood and neonatal fundus images are usually of poor quality and resolution. We investigate two ways to aid clinicians in ROP detection using convolutional neural networks (CNN): (1) We fine-tune a pretrained GoogLeNet as a ROP d
55#
發(fā)表于 2025-3-31 03:38:10 | 只看該作者
Vincent Jeanne,Maarten BodlaenderCT) examinations. FCN has proven to be a very powerful tool for semantic segmentation. We explore the FCN performance on a relatively small dataset and compare it to patch based CNN and sparsity based classification schemes. Our data contains CT examinations from 20 patients with overall 68 lesions
56#
發(fā)表于 2025-3-31 07:11:13 | 只看該作者
57#
發(fā)表于 2025-3-31 10:18:56 | 只看該作者
58#
發(fā)表于 2025-3-31 16:33:22 | 只看該作者
59#
發(fā)表于 2025-3-31 18:54:00 | 只看該作者
Theoretical Approach in Design Methodologyent a new multi-task convolutional neural network (CNN) approach for detection and semantic description of lesions in diagnostic images. The proposed CNN-based architecture is trained to generate and rank rectangular regions of interests (ROI’s) surrounding suspicious areas. The highest score candid
60#
發(fā)表于 2025-3-31 22:16:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 17:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平罗县| 芷江| 云和县| 临颍县| 余庆县| 旺苍县| 温宿县| 监利县| 黄浦区| 尼木县| 太湖县| 个旧市| 南城县| 富源县| 靖宇县| 昌黎县| 惠州市| 温泉县| 庆元县| 浦东新区| 远安县| 增城市| 汉源县| 阳城县| 长岛县| 乌拉特前旗| 利津县| 北票市| 宜章县| 古蔺县| 白水县| 闵行区| 清河县| 高碑店市| 潢川县| 英山县| 三门峡市| 漯河市| 张家口市| 台北县| 宽甸|