找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Data Labeling for Medical Applications; First International Gustavo Carneiro,Diana Mateus,Julien Cornebise Conference pr

[復(fù)制鏈接]
查看: 55873|回復(fù): 62
樓主
發(fā)表于 2025-3-21 19:00:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning and Data Labeling for Medical Applications
副標(biāo)題First International
編輯Gustavo Carneiro,Diana Mateus,Julien Cornebise
視頻videohttp://file.papertrans.cn/265/264592/264592.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Deep Learning and Data Labeling for Medical Applications; First International  Gustavo Carneiro,Diana Mateus,Julien Cornebise Conference pr
描述This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods;?active learning;?transfer learning;?semi-supervised learning; and modeling of label uncertainty.The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques..
出版日期Conference proceedings 2016
關(guān)鍵詞active learning; deep learning; human-computer interaction; label uncertainty; medical image analysis; an
版次1
doihttps://doi.org/10.1007/978-3-319-46976-8
isbn_softcover978-3-319-46975-1
isbn_ebook978-3-319-46976-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2016
The information of publication is updating

書目名稱Deep Learning and Data Labeling for Medical Applications影響因子(影響力)




書目名稱Deep Learning and Data Labeling for Medical Applications影響因子(影響力)學(xué)科排名




書目名稱Deep Learning and Data Labeling for Medical Applications網(wǎng)絡(luò)公開度




書目名稱Deep Learning and Data Labeling for Medical Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning and Data Labeling for Medical Applications被引頻次




書目名稱Deep Learning and Data Labeling for Medical Applications被引頻次學(xué)科排名




書目名稱Deep Learning and Data Labeling for Medical Applications年度引用




書目名稱Deep Learning and Data Labeling for Medical Applications年度引用學(xué)科排名




書目名稱Deep Learning and Data Labeling for Medical Applications讀者反饋




書目名稱Deep Learning and Data Labeling for Medical Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:11:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:12:43 | 只看該作者
地板
發(fā)表于 2025-3-22 06:37:28 | 只看該作者
0302-9743 n Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DL
5#
發(fā)表于 2025-3-22 10:33:51 | 只看該作者
Roundtable: A Discussion About Design/Repairaluations. Object search evidence obtained from three orientations and different learning architectures is consolidated through fusion schemes to lead to the target organ location. Experiments conducted using 499 patient CT body scans show promise and robustness of the proposed approach.
6#
發(fā)表于 2025-3-22 15:14:02 | 只看該作者
https://doi.org/10.1007/978-3-031-01598-4ss validation was used giving an average accuracy of 94.5?%, a major improvement from previous methods which had an accuracy of 84?% on the same dataset. The method was also validated on a dataset of the carotid artery to show that the method can generalize to blood vessels on other regions of the body. The accuracy on this dataset was 96?%.
7#
發(fā)表于 2025-3-22 20:31:54 | 只看該作者
Designed Technologies for Healthy Agingss longitudinal data, a novel contribution in the domain of MS lesion analysis. The method was tested on the ISBI 2015 dataset and obtained state-of-the-art Dice results with the performance level of a trained human rater.
8#
發(fā)表于 2025-3-22 23:54:52 | 只看該作者
9#
發(fā)表于 2025-3-23 01:39:11 | 只看該作者
Vincent Jeanne,Maarten Bodlaendereriority of the FCN over all other methods tested. Using our fully automatic algorithm we achieved true positive rate of 0.86 and 0.6 false positive per case which are very promising and clinically relevant results.
10#
發(fā)表于 2025-3-23 07:37:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 17:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富源县| 常熟市| 正宁县| 吉水县| 独山县| 张家川| 南宫市| 娄底市| 太谷县| 萨迦县| 古蔺县| 收藏| 中西区| 全南县| 鞍山市| 兴安县| 金阳县| 安图县| 明星| 平昌县| 襄垣县| 广东省| 娄烦县| 房产| 新巴尔虎右旗| 自贡市| 汶上县| 肇东市| 白水县| 贵德县| 吉首市| 滨海县| 台北市| 自治县| 涟源市| 朔州市| 巴塘县| 玉屏| 泸水县| 大理市| 沽源县|