找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Data Labeling for Medical Applications; First International Gustavo Carneiro,Diana Mateus,Julien Cornebise Conference pr

[復(fù)制鏈接]
樓主: interleukins
21#
發(fā)表于 2025-3-25 06:26:53 | 只看該作者
22#
發(fā)表于 2025-3-25 10:46:18 | 只看該作者
23#
發(fā)表于 2025-3-25 11:39:37 | 只看該作者
Conference proceedings 2016ge reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques..
24#
發(fā)表于 2025-3-25 19:30:19 | 只看該作者
0302-9743 medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques..978-3-319-46975-1978-3-319-46976-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
25#
發(fā)表于 2025-3-25 21:15:03 | 只看該作者
HEp-2 Cell Classification Using K-Support Spatial Pooling in Deep CNNserior performance compared with mean pooling strategy in the traditional state-of-the-art coding methods such as sparse coding, linear locality-constrained coding and so on. However, the max pooling strategy in SPP-net only retains the strongest activated pattern, and would completely ignore the fre
26#
發(fā)表于 2025-3-26 03:49:08 | 只看該作者
Fast Predictive Image Registrationetwork, which allows evaluation of deformation field uncertainty through Monte Carlo sampling using dropout at test time. We show that deformation uncertainty highlights areas of ambiguous deformations. We test our method on the OASIS brain image dataset in 2D and 3D.
27#
發(fā)表于 2025-3-26 06:52:05 | 只看該作者
28#
發(fā)表于 2025-3-26 08:42:42 | 只看該作者
De-noising of Contrast-Enhanced MRI Sequences by an Ensemble of Expert Deep Neural Networksep Neural Networks (DNNs) to address the DCE-MRI de-noising challenges. The key idea is based on an ensembling of expert DNNs, where each is trained for different noise characteristics and curve prototypes to solve an inverse problem on a specific subset of the input space. The most likely reconstru
29#
發(fā)表于 2025-3-26 13:40:04 | 只看該作者
Three-Dimensional CT Image Segmentation by Combining 2D Fully Convolutional Network with 3D Majorityt any adjustment. We applied the proposed method to segment a wide range of anatomical structures that consisted of 19 types of targets in the human torso, including all the major organs. A database consisting of 240 3D CT scans and a humanly annotated ground truth was used for training and testing.
30#
發(fā)表于 2025-3-26 18:52:11 | 只看該作者
Medical Image Description Using Multi-task-loss CNNates the need for hand-crafted features, and allows application of the method to new modalities and organs with minimal overhead. The proposed approach generates medical report by estimating standard radiological lexicon descriptors which are a basis for diagnosis. The proposed approach should help
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 00:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镶黄旗| 龙陵县| 莆田市| 双鸭山市| 汕头市| 榆中县| 黄陵县| 合作市| 林西县| 富源县| 裕民县| 慈溪市| 平安县| 连州市| 丰顺县| 甘孜县| 兴和县| 灵山县| 卢湾区| 隆尧县| 桐庐县| 珲春市| 北海市| 德阳市| 张家口市| 平果县| 永嘉县| 剑阁县| 辽阳市| 咸宁市| 山西省| 府谷县| 河池市| 犍为县| 宝应县| 墨玉县| 溧阳市| 五华县| 临高县| 稻城县| 乡城县|