找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data-Driven Modelling of Non-Domestic Buildings Energy Performance; Supporting Building Saleh Seyedzadeh,Farzad Pour Rahimian Book 2021 Th

[復(fù)制鏈接]
查看: 18135|回復(fù): 43
樓主
發(fā)表于 2025-3-21 16:52:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data-Driven Modelling of Non-Domestic Buildings Energy Performance
副標(biāo)題Supporting Building
編輯Saleh Seyedzadeh,Farzad Pour Rahimian
視頻videohttp://file.papertrans.cn/264/263304/263304.mp4
概述Offers a framework to efficiently select machine learning models to forecast energy loads of buildings.Develops an energy performance prediction model for non-domestic buildings.Provides a case study
叢書名稱Green Energy and Technology
圖書封面Titlebook: Data-Driven Modelling of Non-Domestic Buildings Energy Performance; Supporting Building  Saleh Seyedzadeh,Farzad Pour Rahimian Book 2021 Th
描述.This book outlines the data-driven modelling of building energy performance to support retrofit decision-making. It explains how to determine the appropriate machine learning (ML) model, explores the selection and expansion of a reasonable dataset and discusses the extraction of relevant features and maximisation of model accuracy...This book?develops a framework for the quick selection of a ML model based on the data and application. It also proposes a method for optimising ML models for forecasting buildings energy loads by employing multi-objective optimisation with evolutionary algorithms. The book then develops an energy performance prediction model for non-domestic buildings using ML techniques, as well as utilising a case study to lay out the process of model development. Finally, the book outlines a framework to choose suitable artificial intelligence methods for modelling building energy performances...This book is of use to both academics and practising energy engineers, as it provides theoretical and practical advice relating to data-driven modelling for energy retrofitting of non-domestic buildings..
出版日期Book 2021
關(guān)鍵詞Building Energy Performance; Building Energy Modelling; Data-Driven Modelling; Machine Learning; Energy
版次1
doihttps://doi.org/10.1007/978-3-030-64751-3
isbn_softcover978-3-030-64753-7
isbn_ebook978-3-030-64751-3Series ISSN 1865-3529 Series E-ISSN 1865-3537
issn_series 1865-3529
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Data-Driven Modelling of Non-Domestic Buildings Energy Performance影響因子(影響力)




書目名稱Data-Driven Modelling of Non-Domestic Buildings Energy Performance影響因子(影響力)學(xué)科排名




書目名稱Data-Driven Modelling of Non-Domestic Buildings Energy Performance網(wǎng)絡(luò)公開度




書目名稱Data-Driven Modelling of Non-Domestic Buildings Energy Performance網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data-Driven Modelling of Non-Domestic Buildings Energy Performance被引頻次




書目名稱Data-Driven Modelling of Non-Domestic Buildings Energy Performance被引頻次學(xué)科排名




書目名稱Data-Driven Modelling of Non-Domestic Buildings Energy Performance年度引用




書目名稱Data-Driven Modelling of Non-Domestic Buildings Energy Performance年度引用學(xué)科排名




書目名稱Data-Driven Modelling of Non-Domestic Buildings Energy Performance讀者反饋




書目名稱Data-Driven Modelling of Non-Domestic Buildings Energy Performance讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:15:04 | 只看該作者
The Child’s and the Practical View of Spacensumption of buildings. These regulations are diverse targeting different areas, new and existing buildings and usage types. This paper reviews the methods employed for building energy performance assessment and summarise the schemes introduced by governments. The challenges with current participate
板凳
發(fā)表于 2025-3-22 00:30:22 | 只看該作者
Conceptions of Space in Social Thoughtbuilding energy consumption and performance. This chapter provides a substantial review on the four main ML approaches including artificial neural network, support vector machine, Gaussian-based regressions and clustering, which have commonly been applied in forecasting and improving building energy
地板
發(fā)表于 2025-3-22 08:12:39 | 只看該作者
Conceptions of Space in Social Thoughtfor each ML model and using two simulated building energy data. The use of grid search coupled with cross-validation method in examination of the model parameters is demonstrated. Furthermore, sensitivity analysis techniques are used to evaluate the importance of input variables on the performance o
5#
發(fā)表于 2025-3-22 10:41:12 | 只看該作者
6#
發(fā)表于 2025-3-22 15:49:15 | 只看該作者
7#
發(fā)表于 2025-3-22 19:43:27 | 只看該作者
8#
發(fā)表于 2025-3-22 21:18:45 | 只看該作者
978-3-030-64753-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
9#
發(fā)表于 2025-3-23 02:42:54 | 只看該作者
Saleh Seyedzadeh,Farzad Pour RahimianOffers a framework to efficiently select machine learning models to forecast energy loads of buildings.Develops an energy performance prediction model for non-domestic buildings.Provides a case study
10#
發(fā)表于 2025-3-23 09:35:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 22:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤台县| 莱阳市| 澎湖县| 榆林市| 枞阳县| 措美县| 远安县| 凤庆县| 应城市| 通州区| 通辽市| 桑植县| 甘泉县| 嵊州市| 石泉县| 铜鼓县| 安溪县| 庄浪县| 庆元县| 玛多县| 兴国县| 宝清县| 若尔盖县| 东平县| 吴旗县| 乌什县| 南平市| 泉州市| 安图县| 都匀市| 静安区| 腾冲县| 宾阳县| 安康市| 个旧市| 瓮安县| 华容县| 江北区| 和田市| 佳木斯市| 黄龙县|