找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data-Driven Modelling of Non-Domestic Buildings Energy Performance; Supporting Building Saleh Seyedzadeh,Farzad Pour Rahimian Book 2021 Th

[復(fù)制鏈接]
樓主: commotion
21#
發(fā)表于 2025-3-25 03:29:10 | 只看該作者
Conceptions of Space in Social Thoughtl parameters is demonstrated. Furthermore, sensitivity analysis techniques are used to evaluate the importance of input variables on the performance of ML models. The accuracy and time complexity of models in predicting heating and cooling loads are demonstrated.
22#
發(fā)表于 2025-3-25 11:29:55 | 只看該作者
23#
發(fā)表于 2025-3-25 14:22:01 | 只看該作者
Building Energy Data-Driven Model Improved by Multi-objective Optimisation,sed method, and compares the outcomes with the regular ML tuning procedure (i.e. grid search). The optimised model provides a reliable tool for building designers and engineers to explore a large space of the available building materials and technologies.
24#
發(fā)表于 2025-3-25 18:23:02 | 只看該作者
25#
發(fā)表于 2025-3-25 20:55:17 | 只看該作者
26#
發(fā)表于 2025-3-26 01:14:45 | 只看該作者
27#
發(fā)表于 2025-3-26 06:12:02 | 只看該作者
28#
發(fā)表于 2025-3-26 11:52:58 | 只看該作者
Introduction,gly, the enhancement of energy efficiency of buildings has become an essential matter in order to reduce the amount of gas emission as well as fossil fuel consumption. An annual saving of 60 billion Euro is estimated as a result of the improvement of EU buildings energy performance by 20% [.].
29#
發(fā)表于 2025-3-26 12:41:44 | 只看該作者
30#
發(fā)表于 2025-3-26 19:37:42 | 只看該作者
Machine Learning for Building Energy Forecasting,building energy consumption and performance. This chapter provides a substantial review on the four main ML approaches including artificial neural network, support vector machine, Gaussian-based regressions and clustering, which have commonly been applied in forecasting and improving building energy
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 22:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵阳市| 肇源县| 东乌珠穆沁旗| 宽甸| 马公市| 红原县| 安徽省| 绍兴市| 南康市| 泽州县| 韩城市| 柳江县| 深圳市| 昆山市| 宜兰市| 新邵县| 商都县| 电白县| 鄄城县| 阜南县| 水城县| 济阳县| 塔城市| 太原市| 巩义市| 敖汉旗| 红原县| 沙湾县| 新绛县| 鹰潭市| 耒阳市| 桓仁| 晋州市| 如皋市| 遂川县| 夏河县| 佛教| 绥芬河市| 岑巩县| 北安市| 竹山县|