找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data-Driven Modelling of Non-Domestic Buildings Energy Performance; Supporting Building Saleh Seyedzadeh,Farzad Pour Rahimian Book 2021 Th

[復(fù)制鏈接]
樓主: commotion
11#
發(fā)表于 2025-3-23 09:59:06 | 只看該作者
Introduction,gly, the enhancement of energy efficiency of buildings has become an essential matter in order to reduce the amount of gas emission as well as fossil fuel consumption. An annual saving of 60 billion Euro is estimated as a result of the improvement of EU buildings energy performance by 20% [.].
12#
發(fā)表于 2025-3-23 16:21:02 | 只看該作者
Machine Learning for Building Energy Forecasting,building energy consumption and performance. This chapter provides a substantial review on the four main ML approaches including artificial neural network, support vector machine, Gaussian-based regressions and clustering, which have commonly been applied in forecasting and improving building energy performance.
13#
發(fā)表于 2025-3-23 19:36:24 | 只看該作者
Data-Driven Modelling of Non-Domestic Buildings Energy Performance978-3-030-64751-3Series ISSN 1865-3529 Series E-ISSN 1865-3537
14#
發(fā)表于 2025-3-23 22:56:19 | 只看該作者
15#
發(fā)表于 2025-3-24 03:42:19 | 只看該作者
Conceptions of Space in Social Thoughtbuilding energy consumption and performance. This chapter provides a substantial review on the four main ML approaches including artificial neural network, support vector machine, Gaussian-based regressions and clustering, which have commonly been applied in forecasting and improving building energy performance.
16#
發(fā)表于 2025-3-24 08:07:55 | 只看該作者
https://doi.org/10.1007/978-1-349-16433-2This chapter, first, reviews evaluation indices for the efficient retrofit plan to enhance building energy performance, second, provides the concept and mathematical demonstration of multi-objective optimisation (MOO) and finally presents the potential of using MOO for supporting the development of retrofitting strategies.
17#
發(fā)表于 2025-3-24 11:02:28 | 只看該作者
18#
發(fā)表于 2025-3-24 16:16:11 | 只看該作者
Multi-objective Optimisation and Building Retrofit Planning,This chapter, first, reviews evaluation indices for the efficient retrofit plan to enhance building energy performance, second, provides the concept and mathematical demonstration of multi-objective optimisation (MOO) and finally presents the potential of using MOO for supporting the development of retrofitting strategies.
19#
發(fā)表于 2025-3-24 20:48:46 | 只看該作者
20#
發(fā)表于 2025-3-24 23:26:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 00:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新安县| 道孚县| 东乌珠穆沁旗| 普宁市| 苏尼特左旗| 东源县| 新乡市| 昔阳县| 泽库县| 革吉县| 宁乡县| 抚远县| 克山县| 凌云县| 宿松县| 昭觉县| 万安县| 平湖市| 陆良县| 台安县| 遂宁市| 五常市| 鹤庆县| 丹阳市| 无棣县| 大厂| 鄂托克前旗| 精河县| 辽阳县| 文登市| 拉孜县| 海宁市| 淅川县| 德昌县| 葵青区| 文安县| 彰武县| 涟水县| 清流县| 湖北省| 屯昌县|