找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data-Driven Modelling of Non-Domestic Buildings Energy Performance; Supporting Building Saleh Seyedzadeh,Farzad Pour Rahimian Book 2021 Th

[復制鏈接]
樓主: commotion
21#
發(fā)表于 2025-3-25 03:29:10 | 只看該作者
Conceptions of Space in Social Thoughtl parameters is demonstrated. Furthermore, sensitivity analysis techniques are used to evaluate the importance of input variables on the performance of ML models. The accuracy and time complexity of models in predicting heating and cooling loads are demonstrated.
22#
發(fā)表于 2025-3-25 11:29:55 | 只看該作者
23#
發(fā)表于 2025-3-25 14:22:01 | 只看該作者
Building Energy Data-Driven Model Improved by Multi-objective Optimisation,sed method, and compares the outcomes with the regular ML tuning procedure (i.e. grid search). The optimised model provides a reliable tool for building designers and engineers to explore a large space of the available building materials and technologies.
24#
發(fā)表于 2025-3-25 18:23:02 | 只看該作者
25#
發(fā)表于 2025-3-25 20:55:17 | 只看該作者
26#
發(fā)表于 2025-3-26 01:14:45 | 只看該作者
27#
發(fā)表于 2025-3-26 06:12:02 | 只看該作者
28#
發(fā)表于 2025-3-26 11:52:58 | 只看該作者
Introduction,gly, the enhancement of energy efficiency of buildings has become an essential matter in order to reduce the amount of gas emission as well as fossil fuel consumption. An annual saving of 60 billion Euro is estimated as a result of the improvement of EU buildings energy performance by 20% [.].
29#
發(fā)表于 2025-3-26 12:41:44 | 只看該作者
30#
發(fā)表于 2025-3-26 19:37:42 | 只看該作者
Machine Learning for Building Energy Forecasting,building energy consumption and performance. This chapter provides a substantial review on the four main ML approaches including artificial neural network, support vector machine, Gaussian-based regressions and clustering, which have commonly been applied in forecasting and improving building energy
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 00:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
启东市| 虎林市| 永顺县| 栖霞市| 宁陵县| 石渠县| 岳普湖县| 河间市| 广饶县| 陆良县| 南靖县| 西乌珠穆沁旗| 庐江县| 绥德县| 靖安县| 宜州市| 苍梧县| 尉氏县| 班戈县| 梁山县| 宁陕县| 溆浦县| 高雄市| 黄骅市| 德清县| 邵东县| 衡水市| 即墨市| 赤壁市| 二手房| 昌图县| 东宁县| 凌海市| 沂水县| 丰都县| 黄大仙区| 澄迈县| 望江县| 上虞市| 深泽县| 右玉县|