找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Trends in Number Theory; Sukumar Das Adhikari,Shashikant A. Katre,B. Ramakr Book 2002 Hindustan Book Agency (India) 2002

[復制鏈接]
樓主: Nixon
51#
發(fā)表于 2025-3-30 10:04:53 | 只看該作者
52#
發(fā)表于 2025-3-30 15:12:27 | 只看該作者
53#
發(fā)表于 2025-3-30 18:15:00 | 只看該作者
Higher Circular ,-units of Anderson and Ihara,rcular .-units so as to include for consideration non-Abelian extensions of ? of certain type. These units were introduced and studied by Anderson and Ihara in [1]. This article an exposition of the result in [1] about the Higher circular .-units. At the end we discuss the question regarding the higher circular .-units raised in [1].
54#
發(fā)表于 2025-3-30 23:07:11 | 只看該作者
Reflection Representation and Theta Correspondence,lection representation Π. of .(F.) is the representation on the space of complex valued functions on ?.(F.) whose sum of values is zero. The aim of this work is to study the decomposition of the tensor product of Π. with itself and its relation with the dual pair correspondences. We find that the decomposition is “essentially multiplicity free”.
55#
發(fā)表于 2025-3-31 01:41:11 | 只看該作者
On the Average of the Sum-of-odd-divisors Function,term in the average .(.) = Σ.’(.). We apply the method of averaging over suitable arithmetic progressions to get an extension of the Ω-results obtained by Y.-F.S. Pétermann in the case of the sum-of-divisors function, the classical .(.).
56#
發(fā)表于 2025-3-31 07:37:17 | 只看該作者
Rogers-Ramanujan Identities, (1 ? .); (.;.). = 1.) They were first discovered by Rogers in 1894. After two decades they were rediscovered by Ramanujan and Schur, independently. MacMahon [12, Theorems 364, 365 p.291], gave the following combinatorial interpretations of (1.1) and (1-2), respectively:
57#
發(fā)表于 2025-3-31 10:57:04 | 只看該作者
58#
發(fā)表于 2025-3-31 16:11:17 | 只看該作者
The Addition Law on Hyperelliptic Jacobians,lex numbers, this can be done using theta function identities. Abstractly, the group law was written down by Cantor [1]. As observed by Koblitz [2], this makes it possible to use the set of points on the Jacobian of a hyperelliptic curve (or more succintly, a hyperelliptic Jacobian) over a finite fi
59#
發(fā)表于 2025-3-31 19:43:34 | 只看該作者
Sieving Using Dirichlet Series,is the method of Dirichlet series. One associates the Dirichlet series.and tries to obtain analytic (or meromorphic) continuation of the series to a large enough domain. Then, from the analytic properties of .(.), one tries to obtain information on the growth of the coefficients, or the asymptotic p
60#
發(fā)表于 2025-3-31 23:08:15 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 17:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
莎车县| 谢通门县| 开远市| 崇左市| 宁远县| 清丰县| 蒙阴县| 沁水县| 修武县| 旬邑县| 张北县| 竹北市| 敦煌市| 汾西县| 闸北区| 霍山县| 扶沟县| 长垣县| 电白县| 青州市| 阿图什市| 金门县| 淳安县| 阿鲁科尔沁旗| 黄龙县| 辽阳县| 望奎县| 兴文县| 故城县| 景宁| 洪泽县| 永胜县| 沛县| 邛崃市| 新和县| 淮安市| 扶绥县| 阿拉善右旗| 华蓥市| 资溪县| 潼关县|