找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Trends in Number Theory; Sukumar Das Adhikari,Shashikant A. Katre,B. Ramakr Book 2002 Hindustan Book Agency (India) 2002

[復(fù)制鏈接]
樓主: Nixon
31#
發(fā)表于 2025-3-26 23:44:56 | 只看該作者
The Local Root Number of Elliptic Curves,In this paper, we compute the sign of the functional equation of the .-function of elliptic curves in terms of the coefficients of the Weierstra? equation.
32#
發(fā)表于 2025-3-27 04:18:45 | 只看該作者
On Skew-holomorphic Jacobi Forms,Let ., . be positive integers and let . be odd. Let . (mod 2.) be an integer. The theta function. where .(.) := .., . ∈ ?, satisfies the heat equation.and further it satisfies the following transformation law:.where ..(.) := .., . ∈ ?. The Poisson summation formula gives
33#
發(fā)表于 2025-3-27 09:15:11 | 只看該作者
The View-obstruction Problem,The view-obstruction problem was first introduced by T. W. Cusick. In his 1972 paper [10] he stated the following problem.
34#
發(fā)表于 2025-3-27 13:08:09 | 只看該作者
Special Integral Bases with Restricted Coefficients for Extensions of Dedekind Domains,Let . denote a Dedekind domain, . its field of quotients, .(d?) a finite (of degree .) separable extension of . the integral closure of . in .. We choose . to lie in .. It is known that . is a finite .-module generated by . (≥ .) elements ., … .(say).
35#
發(fā)表于 2025-3-27 16:15:40 | 只看該作者
36#
發(fā)表于 2025-3-27 20:12:35 | 只看該作者
Hindustan Book Agency (India) 2002
37#
發(fā)表于 2025-3-28 00:42:48 | 只看該作者
38#
發(fā)表于 2025-3-28 05:46:01 | 只看該作者
On the Average of the Sum-of-odd-divisors Function,term in the average .(.) = Σ.’(.). We apply the method of averaging over suitable arithmetic progressions to get an extension of the Ω-results obtained by Y.-F.S. Pétermann in the case of the sum-of-divisors function, the classical .(.).
39#
發(fā)表于 2025-3-28 08:38:32 | 只看該作者
40#
發(fā)表于 2025-3-28 11:36:15 | 只看該作者
The Addition Law on Hyperelliptic Jacobians,lex numbers, this can be done using theta function identities. Abstractly, the group law was written down by Cantor [1]. As observed by Koblitz [2], this makes it possible to use the set of points on the Jacobian of a hyperelliptic curve (or more succintly, a hyperelliptic Jacobian) over a finite field as the basis of a public-key cryptosystem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 01:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建昌县| 开原市| 上林县| 三原县| 措美县| 峨边| 奉化市| 绥化市| 拜城县| 常州市| 翼城县| 江华| 孟州市| 昭通市| 瓦房店市| 江永县| 庆阳市| 海门市| 五莲县| 祥云县| 紫阳县| 东城区| 克山县| 象山县| 天台县| 大余县| 罗田县| 东安县| 兰溪市| 潜山县| 绥芬河市| 奉节县| 金塔县| 汕头市| 城步| 忻城县| 镇平县| 东至县| 绍兴县| 社会| 东城区|