找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Trends in Number Theory; Sukumar Das Adhikari,Shashikant A. Katre,B. Ramakr Book 2002 Hindustan Book Agency (India) 2002

[復(fù)制鏈接]
樓主: Nixon
41#
發(fā)表于 2025-3-28 15:09:05 | 只看該作者
On Automorphism Groups of Algebraic Curves, we give classical results on the upper bounds of the order of Aut(.). In §2, we discuss the relation between Aut(.) and .-ranks of ., when the ground field . has characteristic . > 0. Finally in §3, we give an upper bound of the orders of abelian subgroups of Aut(.).
42#
發(fā)表于 2025-3-28 22:03:47 | 只看該作者
Zeta Functions for Curves Defined over Finite Fields,lds. We state these conjectures, and also the more recent Weil theorem for singular curves defined over finite fields. We end by remarking on some explicit results we have obtained for the zeta functions of some concrete classes of curves (both non-singular and singular) defined over a certain class of finite fields.
43#
發(fā)表于 2025-3-29 00:54:15 | 只看該作者
An Equation of Goormaghtigh and Diophantine Approximations,mations by applying them to (1). All the constants appearing in this article are effectively computable. This means that they can be determined explicitly in terms of various parameters involved. By .(.), we understand that . is a number depending only on ..
44#
發(fā)表于 2025-3-29 06:29:25 | 只看該作者
The Cyclotomic Problem,acobi sums play an important role in this theory. The present paper is a survey of the work of a number of mathematicians on this problem and indicates the current status of the problem. Recently, Paul van Wamelen has obtained a solution to the problem for any modulus.
45#
發(fā)表于 2025-3-29 10:46:13 | 只看該作者
46#
發(fā)表于 2025-3-29 12:48:17 | 只看該作者
47#
發(fā)表于 2025-3-29 17:45:36 | 只看該作者
Springer Fachmedien Wiesbaden GmbHmations by applying them to (1). All the constants appearing in this article are effectively computable. This means that they can be determined explicitly in terms of various parameters involved. By .(.), we understand that . is a number depending only on ..
48#
發(fā)表于 2025-3-29 21:02:11 | 只看該作者
49#
發(fā)表于 2025-3-30 01:32:01 | 只看該作者
50#
發(fā)表于 2025-3-30 05:58:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察雅县| 介休市| 桦南县| 古田县| 靖远县| 岑溪市| 嵊泗县| 出国| 六盘水市| 乌拉特前旗| 眉山市| 宜章县| 阿拉善右旗| 芜湖县| 阿坝| 彭泽县| 黄大仙区| 闽清县| 陆河县| 哈巴河县| 鲁山县| 甘泉县| 西乌珠穆沁旗| 荃湾区| 新巴尔虎左旗| 井研县| 天等县| 英吉沙县| 禄劝| 吴桥县| 耒阳市| 洪雅县| 曲水县| 紫阳县| 呼伦贝尔市| 荣成市| 临朐县| 石柱| 大洼县| 大石桥市| 郸城县|