找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Covariances in Computer Vision and Machine Learning; Hà Quang Minh,Vittorio Murino Book 2018 Springer Nature Switzerland AG 2018

[復(fù)制鏈接]
樓主: 毛發(fā)
21#
發(fā)表于 2025-3-25 04:45:45 | 只看該作者
stances and divergences between them, we now discuss some of the most important problems encountered in practical applications, namely classification and regression on SPD matrices. In machine learning, a prominent paradigm for solving classification and regression problems is that of kernel methods
22#
發(fā)表于 2025-3-25 09:40:50 | 只看該作者
is chapter, by employing the feature map viewpoint of kernel methods in machine learning, we generalize covariance matrices to infinite-dimensional covariance operators in RKHS. Since they encode . between input features, they can be employed as a powerful form of data representation, which we explo
23#
發(fā)表于 2025-3-25 13:21:29 | 只看該作者
24#
發(fā)表于 2025-3-25 18:12:42 | 只看該作者
an distance, and Log-Hilbert-Schmidt distance and inner product between RKHS covariance operators. In this chapter, we show how the Hilbert-Schmidt and Log-Hilbert-Schmidt distances and inner products can be used to define positive definite kernels, allowing us to apply kernel methods on top of cova
25#
發(fā)表于 2025-3-25 22:42:48 | 只看該作者
26#
發(fā)表于 2025-3-26 03:02:37 | 只看該作者
978-3-031-00692-0Springer Nature Switzerland AG 2018
27#
發(fā)表于 2025-3-26 07:26:51 | 只看該作者
28#
發(fā)表于 2025-3-26 10:32:22 | 只看該作者
an distances and divergences intrinsic to SPD matrices, as described in Chapter 2, it is necessary to define new positive definite kernels based on these distances and divergences. In this chapter, we describe these kernels and the corresponding kernel methods.
29#
發(fā)表于 2025-3-26 14:02:12 | 只看該作者
model . in the input data, can substantially outperform finite-dimensional covariance matrices, which only model . in the input. This performance gain comes at higher computational costs and we showed how to substantially decrease these costs via approximation methods.
30#
發(fā)表于 2025-3-26 17:27:02 | 只看該作者
Kernel Methods on Covariance Matricesan distances and divergences intrinsic to SPD matrices, as described in Chapter 2, it is necessary to define new positive definite kernels based on these distances and divergences. In this chapter, we describe these kernels and the corresponding kernel methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 01:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安福县| 海口市| 崇文区| 深州市| 民乐县| 汉川市| 鄂伦春自治旗| 肇东市| 高清| 乃东县| 福泉市| 时尚| 文登市| 阜城县| 京山县| 陆良县| 广饶县| 桐庐县| 松滋市| 九江市| 缙云县| 泸西县| 聂拉木县| 珲春市| 佳木斯市| 祁连县| 彩票| 泰宁县| 探索| 珠海市| 琼中| 浦江县| 迭部县| 西贡区| 石嘴山市| 平顶山市| 南丰县| 高唐县| 广元市| 浦江县| 遂昌县|