找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Optimization with Computational Errors; Alexander J. Zaslavski Book 2020 Springer Nature Switzerland AG 2020 convex optimization.ma

[復(fù)制鏈接]
樓主: Fixate
31#
發(fā)表于 2025-3-26 21:15:43 | 只看該作者
32#
發(fā)表于 2025-3-27 03:49:00 | 只看該作者
33#
發(fā)表于 2025-3-27 07:14:39 | 只看該作者
1931-6828 nerally, different. This fact, which was not taken into account in the previous book, is indeed important in practice. For example, the subgradient projection algorithm consists of two steps. The first step is 978-3-030-37824-0978-3-030-37822-6Series ISSN 1931-6828 Series E-ISSN 1931-6836
34#
發(fā)表于 2025-3-27 09:56:24 | 只看該作者
35#
發(fā)表于 2025-3-27 14:25:06 | 只看該作者
Subgradient Projection Algorithm,all positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
36#
發(fā)表于 2025-3-27 19:50:35 | 只看該作者
37#
發(fā)表于 2025-3-28 01:26:31 | 只看該作者
38#
發(fā)表于 2025-3-28 02:53:24 | 只看該作者
Minimization of Quasiconvex Functions,l errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
39#
發(fā)表于 2025-3-28 10:09:53 | 只看該作者
https://doi.org/10.1007/978-3-663-07526-4t for every algorithm its iteration consists of several steps and that computational errors for different steps are different, in general. In this chapter we discuss several algorithms which are studied in this book.
40#
發(fā)表于 2025-3-28 13:10:56 | 只看該作者
https://doi.org/10.1007/978-3-030-67572-1rors are different. We show that our algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巫山县| 滦南县| 鹰潭市| 纳雍县| 洛浦县| 星座| 祥云县| 廊坊市| 禄丰县| 吉水县| 尼木县| 宜春市| 邵阳市| 南城县| 青岛市| 临西县| 永寿县| 甘南县| 赣榆县| 清苑县| 湖北省| 蒙城县| 宽甸| 阜阳市| 门源| 三江| 师宗县| 汉沽区| 安庆市| 巧家县| 于田县| 开阳县| 金川县| 察哈| 图木舒克市| 阳春市| 九龙坡区| 沁水县| 湾仔区| 安泽县| 宜黄县|