找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Optimization with Computational Errors; Alexander J. Zaslavski Book 2020 Springer Nature Switzerland AG 2020 convex optimization.ma

[復(fù)制鏈接]
樓主: Fixate
21#
發(fā)表于 2025-3-25 05:18:57 | 只看該作者
22#
發(fā)表于 2025-3-25 08:47:19 | 只看該作者
A Projected Subgradient Method for Nonsmooth Problems,this class of problems, an objective function is assumed to be convex but a set of admissible points is not necessarily convex. Our goal is to obtain an .-approximate solution in the presence of computational errors, where . is a given positive number.
23#
發(fā)表于 2025-3-25 14:54:30 | 只看該作者
https://doi.org/10.1007/978-3-663-07526-4mate solution of the problem in the presence of computational errors. It is known that the algorithm generates a good approximate solution, if the sequence of computational errors is bounded from above by a small constant. In our study, presented in this book, we take into consideration the fact tha
24#
發(fā)表于 2025-3-25 16:30:54 | 只看該作者
https://doi.org/10.1007/978-3-663-07526-4f convex–concave functions, under the presence of computational errors. The problem is described by an objective function and a set of feasible points. For this algorithm each iteration consists of two steps. The first step is a calculation of a subgradient of the objective function while in the sec
25#
發(fā)表于 2025-3-25 20:04:59 | 只看該作者
Safety and Epistemic Frankfurt Cases,rs. The problem is described by an objective function and a set of feasible points. For this algorithm each iteration consists of two steps. The first step is a calculation of a gradient of the objective function while in the second one we calculate a projection on the feasible set. In each of these
26#
發(fā)表于 2025-3-26 00:10:30 | 只看該作者
https://doi.org/10.1007/978-3-030-67572-1nvex–concave functions, under the presence of computational errors. The problem is described by an objective function and a set of feasible points. For this algorithm we need a calculation of a subgradient of the objective function and a calculation of a projection on the feasible set. In each of th
27#
發(fā)表于 2025-3-26 05:28:47 | 只看該作者
28#
發(fā)表于 2025-3-26 09:41:18 | 只看該作者
29#
發(fā)表于 2025-3-26 14:59:22 | 只看該作者
30#
發(fā)表于 2025-3-26 16:53:29 | 只看該作者
https://doi.org/10.1007/978-3-030-67572-1r. In general, these two computational errors are different. We show that our algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we fin
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
顺昌县| 金湖县| 藁城市| 彭州市| 百色市| 桂林市| 翁牛特旗| 伊春市| 沛县| 大丰市| 历史| 米易县| 吴忠市| 荥经县| 油尖旺区| 宝鸡市| 宜都市| 大同县| 新丰县| 南皮县| 荥经县| 都江堰市| 榆树市| 梧州市| 五家渠市| 东兰县| 新竹县| 博爱县| 丹寨县| 乌什县| 宝丰县| 渭南市| 阿拉善左旗| 普洱| 宁安市| 新巴尔虎右旗| 沙田区| 建平县| 隆德县| 昆明市| 南川市|