找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Optimization with Computational Errors; Alexander J. Zaslavski Book 2020 Springer Nature Switzerland AG 2020 convex optimization.ma

[復(fù)制鏈接]
樓主: Fixate
41#
發(fā)表于 2025-3-28 15:26:03 | 只看該作者
42#
發(fā)表于 2025-3-28 22:21:15 | 只看該作者
43#
發(fā)表于 2025-3-29 01:40:32 | 只看該作者
44#
發(fā)表于 2025-3-29 06:42:45 | 只看該作者
An Optimization Problems with a Composite Objective Function,rors are different. We show that our algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
45#
發(fā)表于 2025-3-29 10:51:01 | 只看該作者
A Zero-Sum Game with Two Players,e computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
46#
發(fā)表于 2025-3-29 14:49:53 | 只看該作者
47#
發(fā)表于 2025-3-29 17:07:50 | 只看該作者
Continuous Subgradient Method, that our algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two calculations of our algorithm, we find out what approximate solution can be obtained and how much time one needs for this.
48#
發(fā)表于 2025-3-29 22:49:42 | 只看該作者
49#
發(fā)表于 2025-3-30 01:13:19 | 只看該作者
Safety and Epistemic Frankfurt Cases, step is a calculation of a gradient of the objective function while in the second one we calculate a projection on the feasible set. In each of these two steps there is a computational error. In general, these two computational errors are different.
50#
發(fā)表于 2025-3-30 06:55:40 | 只看該作者
https://doi.org/10.1007/978-3-030-67572-1m generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西藏| 永安市| 铁岭市| 竹山县| 巴塘县| 比如县| 和田市| 曲松县| 东方市| 依安县| 靖边县| 金寨县| 丹东市| 讷河市| 新密市| 武邑县| 彰化市| 广昌县| 双牌县| 伊宁市| 万源市| 武乡县| 颍上县| 临安市| 什邡市| 广元市| 桦甸市| 吉林省| 阳朔县| 隆德县| 萨迦县| 安徽省| 余姚市| 桐庐县| 宜兰县| 阿拉尔市| 若羌县| 海丰县| 滕州市| 余庆县| 大安市|