找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computationally Efficient Model Predictive Control Algorithms; A Neural Network App Maciej ?awryńczuk Book 2014 Springer International Publ

[復(fù)制鏈接]
樓主: Jejunum
21#
發(fā)表于 2025-3-25 03:27:25 | 只看該作者
22#
發(fā)表于 2025-3-25 10:55:35 | 只看該作者
23#
發(fā)表于 2025-3-25 12:52:51 | 只看該作者
24#
發(fā)表于 2025-3-25 15:49:26 | 只看該作者
MPC Algorithms Based on Neural State-Space Models,t trajectory and with the output set-point trajectory. Simulation results are concerned with the polymerisation reactor introduced in the previous chapter. It is assumed that all state variables can be measured, but in practice some of them may be unavailable and an observer must be used.
25#
發(fā)表于 2025-3-25 20:53:30 | 只看該作者
26#
發(fā)表于 2025-3-26 01:56:37 | 只看該作者
Cooperation between MPC Algorithms and Set-Point Optimisation Algorithms,ion. Three control structures with on-line linearisation for set-point optimisation are presented next: the multi-layer structure with steady-state target optimisation, the integrated structure and the structure with predictive optimiser and constraint supervisor. Implementation details are given for three classes of neural models.
27#
發(fā)表于 2025-3-26 07:57:04 | 只看該作者
https://doi.org/10.1007/978-0-387-76537-2hms with neural approximation are also presented. They are very computationally efficient, because the neural approximator directly finds on-line the coefficients of the control law, successive on-line linearisation and calculations typical of the classical MPC algorithms are not necessary.
28#
發(fā)表于 2025-3-26 11:31:12 | 只看該作者
MPC Algorithms with Neural Approximation,hms with neural approximation are also presented. They are very computationally efficient, because the neural approximator directly finds on-line the coefficients of the control law, successive on-line linearisation and calculations typical of the classical MPC algorithms are not necessary.
29#
發(fā)表于 2025-3-26 16:01:05 | 只看該作者
30#
發(fā)表于 2025-3-26 18:33:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 10:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绍兴市| 自治县| 望都县| 固镇县| 珲春市| 白河县| 淮阳县| 台湾省| 菏泽市| 鄂托克旗| 容城县| 新干县| 南城县| 广昌县| 大厂| 方城县| 维西| 文登市| 元江| 寿阳县| 衡山县| 托克逊县| 文成县| 广河县| 曲阜市| 隆林| 利津县| 拜城县| 庆安县| 赤壁市| 邛崃市| 平乡县| 全椒县| 渑池县| 新密市| 象山县| 夏邑县| 揭阳市| 新化县| 丹棱县| 雷波县|