找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computationally Efficient Model Predictive Control Algorithms; A Neural Network App Maciej ?awryńczuk Book 2014 Springer International Publ

[復(fù)制鏈接]
樓主: Jejunum
31#
發(fā)表于 2025-3-26 22:31:44 | 只看該作者
MPC Algorithms Based on Neural Hammerstein and Wiener Models,not need the inverse of the steady-state part. Modelling abilities of cascade neural models are demonstrated for a polymerisation process, properties of the presented MPC algorithms are compared in the control systems of two processes.
32#
發(fā)表于 2025-3-27 04:36:13 | 只看該作者
MPC Algorithms Based on Neural Multi-Models,s for the consecutive sampling instants of the prediction horizon. The structure of the neural multi-model is discussed in this chapter, implementation details of the MPC-NO algorithm and some suboptimal MPC schemes are given.
33#
發(fā)表于 2025-3-27 08:48:22 | 只看該作者
34#
發(fā)表于 2025-3-27 09:49:44 | 只看該作者
Maciej ?awryńczukPresents recent research in Computationally Efficient Model Predictive Control Algorithms.Focuses on a Neural Network Approach for Model Predictive Control.Written by an expert in the field
35#
發(fā)表于 2025-3-27 17:42:01 | 只看該作者
36#
發(fā)表于 2025-3-27 17:59:14 | 只看該作者
Power Electronics and Power Systemsed. The general classification of MPC algorithms is given, i.e. linear and nonlinear approaches are characterised. Next, some methods which make it possible to reduce computational burden of nonlinear MPC algorithms are shortly described, including the on-line linearisation approach. A history of MP
37#
發(fā)表于 2025-3-28 01:40:13 | 只看該作者
38#
發(fā)表于 2025-3-28 03:05:16 | 只看該作者
https://doi.org/10.1007/978-3-319-50584-8i-input multi-output models are discussed and implementation details of three algorithms introduced in the previous chapter are given (MPCNO, MPC-NPL and MPC-NPLPT schemes are considered). Additionally, the MPC algorithms with simplified linearisation, which is possible due to special structures of
39#
發(fā)表于 2025-3-28 08:05:51 | 只看該作者
40#
發(fā)表于 2025-3-28 11:01:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 10:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孟州市| 保定市| 奎屯市| 濮阳县| 永新县| 武穴市| SHOW| 彭州市| 丁青县| 奈曼旗| 海口市| 磴口县| 寿光市| 汝阳县| 米林县| 隆德县| 龙山县| 工布江达县| 彭泽县| 加查县| 枣强县| 福鼎市| 宁城县| 翁源县| 瓮安县| 英吉沙县| 如皋市| 沅江市| 罗江县| 礼泉县| 华池县| 高邑县| 盱眙县| 随州市| 玉林市| 平罗县| 定西市| 资中县| 江门市| 宝丰县| 武川县|