找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computationally Efficient Model Predictive Control Algorithms; A Neural Network App Maciej ?awryńczuk Book 2014 Springer International Publ

[復(fù)制鏈接]
樓主: Jejunum
31#
發(fā)表于 2025-3-26 22:31:44 | 只看該作者
MPC Algorithms Based on Neural Hammerstein and Wiener Models,not need the inverse of the steady-state part. Modelling abilities of cascade neural models are demonstrated for a polymerisation process, properties of the presented MPC algorithms are compared in the control systems of two processes.
32#
發(fā)表于 2025-3-27 04:36:13 | 只看該作者
MPC Algorithms Based on Neural Multi-Models,s for the consecutive sampling instants of the prediction horizon. The structure of the neural multi-model is discussed in this chapter, implementation details of the MPC-NO algorithm and some suboptimal MPC schemes are given.
33#
發(fā)表于 2025-3-27 08:48:22 | 只看該作者
34#
發(fā)表于 2025-3-27 09:49:44 | 只看該作者
Maciej ?awryńczukPresents recent research in Computationally Efficient Model Predictive Control Algorithms.Focuses on a Neural Network Approach for Model Predictive Control.Written by an expert in the field
35#
發(fā)表于 2025-3-27 17:42:01 | 只看該作者
36#
發(fā)表于 2025-3-27 17:59:14 | 只看該作者
Power Electronics and Power Systemsed. The general classification of MPC algorithms is given, i.e. linear and nonlinear approaches are characterised. Next, some methods which make it possible to reduce computational burden of nonlinear MPC algorithms are shortly described, including the on-line linearisation approach. A history of MP
37#
發(fā)表于 2025-3-28 01:40:13 | 只看該作者
38#
發(fā)表于 2025-3-28 03:05:16 | 只看該作者
https://doi.org/10.1007/978-3-319-50584-8i-input multi-output models are discussed and implementation details of three algorithms introduced in the previous chapter are given (MPCNO, MPC-NPL and MPC-NPLPT schemes are considered). Additionally, the MPC algorithms with simplified linearisation, which is possible due to special structures of
39#
發(fā)表于 2025-3-28 08:05:51 | 只看該作者
40#
發(fā)表于 2025-3-28 11:01:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 12:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇原县| 屏东市| 左权县| 黄骅市| 阿勒泰市| 宽城| 昔阳县| 富民县| 平湖市| 曲松县| 泰安市| 佛坪县| 巴里| 安岳县| 富民县| 喀喇| 南岸区| 靖宇县| 明星| 河池市| 抚远县| 澄城县| 安福县| 宣城市| 元朗区| 新建县| 米泉市| 乌兰浩特市| 高碑店市| 特克斯县| 荔浦县| 元朗区| 历史| 乐平市| 上虞市| 马山县| 格尔木市| 永城市| 双流县| 通海县| 静乐县|