找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Mathematics Modeling in Cancer Analysis; First International Wenjian Qin,Nazar Zaki,Fan Yang Conference proceedings 2022 The

[復(fù)制鏈接]
樓主: 補(bǔ)給線
31#
發(fā)表于 2025-3-26 21:35:26 | 只看該作者
32#
發(fā)表于 2025-3-27 03:41:48 | 只看該作者
33#
發(fā)表于 2025-3-27 08:14:50 | 只看該作者
34#
發(fā)表于 2025-3-27 09:48:36 | 只看該作者
Automatic Computer-Aided Histopathologic Segmentation for Nasopharyngeal Carcinoma Using Transformeon. To validate and compare the transformer framework with various CNN-based methods, experiments have been conducted on the clinical dataset collection of NPC. The transformer framework outperformed the state-of-the-art pure CNN-based methods in AUC and recall. Especially, our framework achieved 2.
35#
發(fā)表于 2025-3-27 14:06:36 | 只看該作者
Accurate Breast Tumor Identification Using Computational Ultrasound Image Features, proposed algorithm achieved a diagnostic accuracy of 89.32% and a significant area under curve (AUC) of 0.9473 with the repeated cross-validation scheme. In conclusion, our algorithm shows superior performance over the existing classical methods and can be potentially applied to breast cancer scree
36#
發(fā)表于 2025-3-27 20:04:25 | 只看該作者
37#
發(fā)表于 2025-3-27 22:07:04 | 只看該作者
,Is More Always Better? Effects of?Patch Sampling in?Distinguishing Chronic Lymphocytic Leukemia froransformation; RT) has important clinical implications that greatly influence patient management. However, distinguishing between these disease phases on histologic grounds may be challenging in routine practice due to the presence of similar structures and homogeneous intensity, among others. In th
38#
發(fā)表于 2025-3-28 03:08:22 | 只看該作者
39#
發(fā)表于 2025-3-28 06:59:01 | 只看該作者
,MLCN: Metric Learning Constrained Network for?Whole Slide Image Classification with?Bilinear Gated eved good results, the classification performance is still unsatisfactory because the learned features of WSI lack discrimination and the correlation among sub-characteristics of tumor images are ignored. In this paper, we proposed a Metric Learning Constraint Network (referred to as MLCN). Particul
40#
發(fā)表于 2025-3-28 13:47:25 | 只看該作者
,NucDETR: End-to-End Transformer for?Nucleus Detection in?Histopathology Images,pensive task if done manually by experienced clinicians, and is also prone to subjectivity and inconsistency. Alternatively, the advancement in computer vision-based analysis enables the automatic detection of cancerous nuclei; however, the task poses several challenges due to the heterogeneity in t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 08:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
温宿县| 和硕县| 金沙县| 金平| 微博| 行唐县| 商城县| 新蔡县| 东光县| 澄迈县| 昌黎县| 永修县| 宁夏| 上饶市| 镇雄县| 正镶白旗| 凤庆县| 扬州市| 尉氏县| 民丰县| 永清县| 离岛区| 桦南县| 上杭县| 资溪县| 新野县| 西畴县| 雷波县| 五寨县| 鄂托克前旗| 庆安县| 阜新| 鸡泽县| 凤翔县| 行唐县| 桂林市| 榆中县| 博客| 金塔县| 广南县| 桐乡市|