找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Mathematics Modeling in Cancer Analysis; First International Wenjian Qin,Nazar Zaki,Fan Yang Conference proceedings 2022 The

[復(fù)制鏈接]
樓主: 補(bǔ)給線
41#
發(fā)表于 2025-3-28 17:16:49 | 只看該作者
Self-supervised Learning Based on a Pre-trained Method for the Subtype Classification of Spinal Tum tumor subtypes from medical images in the early stage is of great clinical significance. Due to the complex morphology and high heterogeneity of spinal tumors, it can be challenging to diagnose subtypes from medical images accurately. In recent years, a number of researchers have applied deep learn
42#
發(fā)表于 2025-3-28 21:59:42 | 只看該作者
,CanDLE: Illuminating Biases in?Transcriptomic Pan-Cancer Diagnosis, task could be a valuable support in clinical practice and provide insights into the cancer causal mechanisms. To correctly approach this problem, the largest existing resource (The Cancer Genome Atlas) must be complemented with healthy tissue samples from the Genotype-Tissue Expression project. In
43#
發(fā)表于 2025-3-29 00:15:17 | 只看該作者
,Cross-Stream Interactions: Segmentation of?Lung Adenocarcinoma Growth Patterns,terns in routine histology samples is challenging due to the complexity of patterns and high intra-class variability. In this paper, we present a novel model with a multi-stream architecture, Cross-Stream Interactions (CroSIn), which fully considers crucial interactions across scales to gather abund
44#
發(fā)表于 2025-3-29 03:47:02 | 只看該作者
45#
發(fā)表于 2025-3-29 10:13:53 | 只看該作者
46#
發(fā)表于 2025-3-29 11:50:30 | 只看該作者
47#
發(fā)表于 2025-3-29 19:11:18 | 只看該作者
,Light Annotation Fine Segmentation: Histology Image Segmentation Based on?VGG Fusion with?Global Noonsuming. To reduce the manual annotation workload, we propose a light annotation-based fine-level segmentation approach for histology images based on a VGG-based Fusion network with Global Normalisation CAM. The experts are only required to provide a rough segmentation annotation on the images, and
48#
發(fā)表于 2025-3-29 20:49:31 | 只看該作者
,Tubular Structure-Aware Convolutional Neural Networks for?Organ at?Risks Segmentation in?Cervical C are called Organ at Risks (OARs), which are prone to irreversible damage during radiotherapy. Therefore, accurate delineation of OARs is a critical step in ensuring radiotherapy dosimetry accuracy. However, currently existing deep learning-based cervical cancer OARs segmentation methods do not make
49#
發(fā)表于 2025-3-30 01:37:48 | 只看該作者
50#
發(fā)表于 2025-3-30 06:29:21 | 只看該作者
Accurate Breast Tumor Identification Using Computational Ultrasound Image Features,. Ultrasound plays a key role and yet provides an economical solution for breast cancer screening. While valuable, ultrasound is still suffered from limited specificity, and its accuracy is highly related to the clinicians, resulting in inconsistent diagnosis. To address the challenge of limited spe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 15:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通辽市| 定结县| 周口市| 南部县| 会宁县| 泰宁县| 满城县| 威远县| 清徐县| 西充县| 大兴区| 大英县| 盱眙县| 剑阁县| 房山区| 长汀县| 涟源市| 宜川县| 东乌珠穆沁旗| 肇源县| 台北县| 秦皇岛市| 昆明市| 台东市| 鄢陵县| 绩溪县| 高唐县| 丹棱县| 尼玛县| 沙雅县| 鲜城| 囊谦县| 育儿| 延长县| 南川市| 伊吾县| 苍梧县| 措美县| 钦州市| 伊川县| 图们市|