找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Mathematics Modeling in Cancer Analysis; First International Wenjian Qin,Nazar Zaki,Fan Yang Conference proceedings 2022 The

[復(fù)制鏈接]
樓主: 補(bǔ)給線
21#
發(fā)表于 2025-3-25 05:08:23 | 只看該作者
https://doi.org/10.1007/978-981-97-1199-4mour features; and a Global Normalisation CAM module that combines local and global gradient information of tumour regions. Our VGG fusion and Global Normalisation CAM outperform the existing methods with a Dice of 84.188%. The final improvement for our proposed methods against the original rough la
22#
發(fā)表于 2025-3-25 11:22:32 | 只看該作者
https://doi.org/10.1007/978-981-97-1199-4ith original image was input into the nnU-Net network for anatomical morphological information learning. Finally, we evaluated our proposed method on the clinical collection datasets with brachytherapy. Compared to the baseline model and state-of-the-art model, DSC and Recall were improved and the r
23#
發(fā)表于 2025-3-25 13:38:54 | 只看該作者
Competition, Decision, and Consensus,on. To validate and compare the transformer framework with various CNN-based methods, experiments have been conducted on the clinical dataset collection of NPC. The transformer framework outperformed the state-of-the-art pure CNN-based methods in AUC and recall. Especially, our framework achieved 2.
24#
發(fā)表于 2025-3-25 17:33:47 | 只看該作者
25#
發(fā)表于 2025-3-25 21:46:19 | 只看該作者
,Cellular Architecture on?Whole Slide Images Allows the?Prediction of?Survival in?Lung Adenocarcinome demonstrated that by pruning redundant and irrelevant features, the final prediction model has achieved an optimal C-index of 0.70 during testing. Our proof-of-concept study proves that the efficient local-global embedded maps bear valuable information with clinical correlations in lung cancer and
26#
發(fā)表于 2025-3-26 00:16:48 | 只看該作者
27#
發(fā)表于 2025-3-26 05:55:35 | 只看該作者
,Repeatability of?Radiomic Features Against Simulated Scanning Position Stochasticity Across Imagingments across imaging modalities and HNC subtypes. Bias from feature collinearity was also investigated. All the shape RFs and the majority of RFs from unfiltered (.83.5%) and LoG-filtered (.93%) images showed high repeatability (ICC . 0.9) in all studied datasets, whereas more than 50% of the wavele
28#
發(fā)表于 2025-3-26 10:22:18 | 只看該作者
,NucDETR: End-to-End Transformer for?Nucleus Detection in?Histopathology Images,monstrating its effectiveness and benchmarking the performance of Transformer detectors on histopathology images. Where applicable, we also propose remedies that mitigate some of the issues faced when adopting such Transformer-based detection. The proposed end-to-end architecture avoids much of the
29#
發(fā)表于 2025-3-26 16:23:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:17:56 | 只看該作者
,Clustering-Based Multi-instance Learning Network for?Whole Slide Image Classification,odel, and the weights of the WSI patches are calculated by their similarity to the phenotypic centroids to highlight the significant patches. Our method is evaluated on two public WSI datasets (CAMELYON16 and TCGA-Lung) for binary tumor and cancer sub-types classification and achieves better perform
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 16:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄平县| 宁津县| 锡林浩特市| 聂拉木县| 靖宇县| 会东县| 辽中县| 西贡区| 南平市| 大英县| 泰州市| 璧山县| 和平区| 漳浦县| 鹤庆县| 江阴市| 龙山县| 巨鹿县| 韶山市| 磴口县| 新干县| 汽车| 治多县| 麻城市| 朝阳县| 德昌县| 武夷山市| 台南县| 平顺县| 天等县| 中西区| 略阳县| 巨鹿县| 同仁县| 陵水| 密山市| 林州市| 汉寿县| 梓潼县| 伊宁县| 西吉县|