找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Mathematics Modeling in Cancer Analysis; First International Wenjian Qin,Nazar Zaki,Fan Yang Conference proceedings 2022 The

[復(fù)制鏈接]
查看: 28861|回復(fù): 56
樓主
發(fā)表于 2025-3-21 17:58:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Computational Mathematics Modeling in Cancer Analysis
副標(biāo)題First International
編輯Wenjian Qin,Nazar Zaki,Fan Yang
視頻videohttp://file.papertrans.cn/233/232664/232664.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Computational Mathematics Modeling in Cancer Analysis; First International  Wenjian Qin,Nazar Zaki,Fan Yang Conference proceedings 2022 The
描述.This book constitutes the proceedings of the First Workshop on Computational Mathematics Modeling in Cancer Analysis (CMMCA2022), held in conjunction with MICCAI 2022, in Singapore in September 2022. Due to the COVID-19 pandemic restrictions, the CMMCA2022 was held virtually...DALI 2022 accepted 15 papers from the 16 submissions that were reviewed. A major focus of CMMCA2022 is to identify new cutting-edge techniques and their applications in cancer data analysis in response to trends and challenges in theoretical, computational and applied aspects of mathematics in cancer data analysis..
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; cancer diagnosis; color image processing; computer systems; computer vision; dee
版次1
doihttps://doi.org/10.1007/978-3-031-17266-3
isbn_softcover978-3-031-17265-6
isbn_ebook978-3-031-17266-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Computational Mathematics Modeling in Cancer Analysis影響因子(影響力)




書(shū)目名稱Computational Mathematics Modeling in Cancer Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱Computational Mathematics Modeling in Cancer Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Computational Mathematics Modeling in Cancer Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Computational Mathematics Modeling in Cancer Analysis被引頻次




書(shū)目名稱Computational Mathematics Modeling in Cancer Analysis被引頻次學(xué)科排名




書(shū)目名稱Computational Mathematics Modeling in Cancer Analysis年度引用




書(shū)目名稱Computational Mathematics Modeling in Cancer Analysis年度引用學(xué)科排名




書(shū)目名稱Computational Mathematics Modeling in Cancer Analysis讀者反饋




書(shū)目名稱Computational Mathematics Modeling in Cancer Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:35:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:51:51 | 只看該作者
地板
發(fā)表于 2025-3-22 06:14:24 | 只看該作者
5#
發(fā)表于 2025-3-22 10:14:20 | 只看該作者
6#
發(fā)表于 2025-3-22 15:36:55 | 只看該作者
7#
發(fā)表于 2025-3-22 21:04:15 | 只看該作者
https://doi.org/10.1007/978-3-319-15446-6 at both low- and high-level feature learning stages are crucial in performance improvement. The proposed method outperforms state-of-the-art networks, achieving an average Dice of . at patch level, and an average accuracy of . at sample level, which is also verified in an independent cohort.
8#
發(fā)表于 2025-3-23 00:00:13 | 只看該作者
,MLCN: Metric Learning Constrained Network for?Whole Slide Image Classification with?Bilinear Gated apture relations among sub-characteristics of tumor issues. Experiments on CAMELYON16 and TCGA Kidney datasets validate the effectiveness of our approach, and we achieved state-of-the-art performance compared to other popular methods. The codes will be available soon.
9#
發(fā)表于 2025-3-23 05:02:52 | 只看該作者
,Cross-Stream Interactions: Segmentation of?Lung Adenocarcinoma Growth Patterns, at both low- and high-level feature learning stages are crucial in performance improvement. The proposed method outperforms state-of-the-art networks, achieving an average Dice of . at patch level, and an average accuracy of . at sample level, which is also verified in an independent cohort.
10#
發(fā)表于 2025-3-23 09:05:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 11:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙坪坝区| 集贤县| 张掖市| 双桥区| 东光县| 古交市| 钟祥市| 大埔县| 武穴市| 元江| 光山县| 隆林| 武城县| 古浪县| 秦安县| 准格尔旗| 阿坝| 安阳市| 伽师县| 遂川县| 区。| 长治县| 西峡县| 开阳县| 台北市| 绥滨县| 绥中县| 商城县| 北碚区| 德保县| 防城港市| 保定市| 和林格尔县| 枝江市| 成武县| 太康县| 苍山县| 建昌县| 静海县| 东乌珠穆沁旗| 根河市|