找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology of Number Fields; Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Hypothesis
21#
發(fā)表于 2025-3-25 06:57:45 | 只看該作者
Cohomology of Profinite GroupsProfinite groups are topological groups which naturally occur in algebraic number theory as Galois groups of infinite field extensions or more generally as étale fundamental groups of schemes. Their cohomology groups often contain important arithmetic information.
22#
發(fā)表于 2025-3-25 09:20:45 | 只看該作者
23#
發(fā)表于 2025-3-25 12:52:51 | 只看該作者
Iwasawa ModulesThe Iwasawa algebra, usually denoted by the Greek letter Λ, is the complete group algebra . of a group Γ, which is . isomorphic to .. This means that we will not specify a particular isomorphism . or, equivalently, we will not fix a topological generator . of the procyclic group Γ.
24#
發(fā)表于 2025-3-25 19:06:27 | 只看該作者
Cohomology of Global FieldsHaving established the cohomology theory for local fields, we now begin its development for global fields, i.e. algebraic number fields and function fields in one variable over a finite field. The cohomology theory treats both types of fields equally.
25#
發(fā)表于 2025-3-25 23:03:56 | 只看該作者
26#
發(fā)表于 2025-3-26 03:22:19 | 只看該作者
https://doi.org/10.1007/978-3-540-37889-1Galois group; Galois groups; algebra; algebraic number field; algebraic number fields; algebraic number t
27#
發(fā)表于 2025-3-26 05:35:14 | 只看該作者
28#
發(fā)表于 2025-3-26 08:53:26 | 只看該作者
29#
發(fā)表于 2025-3-26 13:09:12 | 只看該作者
A Current View of Oxygen Supply Dependencyalled . (to 1) if every open subgroup . of . contains the images ..(..) for almost all ., i.e. all but a finite number. The free products of pro-.-groups are defined by the following universal property.
30#
發(fā)表于 2025-3-26 19:38:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汕头市| 株洲市| 屯昌县| 桐梓县| 建始县| 佛坪县| 许昌县| 太仆寺旗| 襄樊市| 新化县| 拜泉县| 南和县| 麟游县| 林口县| 永仁县| 黑龙江省| 东台市| 岐山县| 清苑县| 防城港市| 石家庄市| 麻城市| 阳曲县| 胶南市| 潮州市| 陆良县| 巴林右旗| 北碚区| 定安县| 监利县| 安龙县| 台北县| 徐闻县| 德庆县| 高唐县| 金溪县| 阳朔县| 达州市| 柳州市| 辽源市| 肇东市|