找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology of Number Fields; Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The

[復制鏈接]
查看: 6775|回復: 49
樓主
發(fā)表于 2025-3-21 19:22:41 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Cohomology of Number Fields
編輯Jürgen Neukirch,Alexander Schmidt,Kay Wingberg
視頻videohttp://file.papertrans.cn/230/229265/229265.mp4
概述In the words of a reviewer: “This monograph gives a very complete treatment of a vast array of central topics in algebraic number theory.There is so much material written down systematically which was
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Cohomology of Number Fields;  Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The
出版日期Book 2008Latest edition
關鍵詞Galois group; Galois groups; algebra; algebraic number field; algebraic number fields; algebraic number t
版次2
doihttps://doi.org/10.1007/978-3-540-37889-1
isbn_softcover978-3-662-51745-1
isbn_ebook978-3-540-37889-1Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightThe Editor(s) (if applicable) and The Author(s) 2008
The information of publication is updating

書目名稱Cohomology of Number Fields影響因子(影響力)




書目名稱Cohomology of Number Fields影響因子(影響力)學科排名




書目名稱Cohomology of Number Fields網(wǎng)絡公開度




書目名稱Cohomology of Number Fields網(wǎng)絡公開度學科排名




書目名稱Cohomology of Number Fields被引頻次




書目名稱Cohomology of Number Fields被引頻次學科排名




書目名稱Cohomology of Number Fields年度引用




書目名稱Cohomology of Number Fields年度引用學科排名




書目名稱Cohomology of Number Fields讀者反饋




書目名稱Cohomology of Number Fields讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:33:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:34:37 | 只看該作者
地板
發(fā)表于 2025-3-22 07:54:28 | 只看該作者
Cohomology of Local Fieldst to a discrete valuation and has a finite residue field. This covers two cases, namely .-., i.e. finite extensions of . for some prime number ., and .. in one variable over a finite field. For the basic properties of local fields we refer to [160], chapters II and V. As always, . denotes a separabl
5#
發(fā)表于 2025-3-22 09:06:59 | 只看該作者
6#
發(fā)表于 2025-3-22 15:22:29 | 只看該作者
Iwasawa Theory of Number Fieldse variable over a finite field. This analogy should also extend to the theory of .-functions and .-functions of global fields. If, for a function field ., one considers the corresponding smooth and proper curve ., where . is the field of constants of ., then the .-function of the curve . is a ration
7#
發(fā)表于 2025-3-22 19:03:38 | 只看該作者
8#
發(fā)表于 2025-3-22 22:26:44 | 只看該作者
9#
發(fā)表于 2025-3-23 05:04:54 | 只看該作者
Mechanisms of Innate Immunity in Sepsis,few conceptual results. For example, there is a famous conjecture due to . which asserts that the subgroup .. of .. is a free profinite group, where .(.) is the field obtained from . by adjoining all roots of unity. This was proved by . [171] for function fields, but the conjecture is open in the number field case.
10#
發(fā)表于 2025-3-23 07:39:41 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
西乌珠穆沁旗| 敖汉旗| 丰原市| 徐汇区| 收藏| 习水县| 乳山市| 兰考县| 德清县| 房山区| 商城县| 历史| 东台市| 洛浦县| 常山县| 登封市| 南郑县| 梨树县| 双柏县| 含山县| 水城县| 华亭县| 连山| 南宫市| 惠安县| 禹城市| 黔江区| 永宁县| 平遥县| 阿鲁科尔沁旗| 罗田县| 聊城市| 黄石市| 六枝特区| 瑞金市| 赣州市| 讷河市| 如皋市| 东宁县| 临漳县| 临武县|