找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology of Number Fields; Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Hypothesis
11#
發(fā)表于 2025-3-23 11:44:56 | 只看該作者
The Absolute Galois Group of a Global Fieldfew conceptual results. For example, there is a famous conjecture due to . which asserts that the subgroup .. of .. is a free profinite group, where .(.) is the field obtained from . by adjoining all roots of unity. This was proved by . [171] for function fields, but the conjecture is open in the number field case.
12#
發(fā)表于 2025-3-23 14:05:35 | 只看該作者
13#
發(fā)表于 2025-3-23 20:17:54 | 只看該作者
Iwasawa Theory of Number Fieldsoring with ., one obtains a .-vector space of dimension 2., where . is the genus of .. The characteristic polynomial with respect to the endomorphism .. is the essential part of the .-function of the curve ..
14#
發(fā)表于 2025-3-24 01:25:55 | 只看該作者
15#
發(fā)表于 2025-3-24 04:56:03 | 只看該作者
16#
發(fā)表于 2025-3-24 06:34:41 | 只看該作者
17#
發(fā)表于 2025-3-24 12:06:04 | 只看該作者
18#
發(fā)表于 2025-3-24 17:17:07 | 只看該作者
Justin Wong MD, FRCPC,Anand Kumar MD, FRCPCThe Iwasawa algebra, usually denoted by the Greek letter Λ, is the complete group algebra . of a group Γ, which is . isomorphic to .. This means that we will not specify a particular isomorphism . or, equivalently, we will not fix a topological generator . of the procyclic group Γ.
19#
發(fā)表于 2025-3-24 20:52:03 | 只看該作者
Ian Nesbitt MBBS(Hons), FRCA, DICM(UK)Having established the cohomology theory for local fields, we now begin its development for global fields, i.e. algebraic number fields and function fields in one variable over a finite field. The cohomology theory treats both types of fields equally.
20#
發(fā)表于 2025-3-25 02:25:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡阳市| 佛学| 思南县| 辽宁省| 陇南市| 类乌齐县| 台中市| 荆州市| 宁夏| 措勤县| 谷城县| 宿迁市| 三都| 宁乡县| 两当县| 怀柔区| 淅川县| 盐池县| 镇雄县| 德惠市| 郧西县| 外汇| 玛纳斯县| 枞阳县| 神木县| 凤翔县| 额尔古纳市| 北海市| 平远县| 尼玛县| 凤阳县| 中卫市| 辽宁省| 鄢陵县| 颍上县| 博爱县| 江门市| 南涧| 洛川县| 临高县| 尚志市|