找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cerebral Aneurysm Detection and Analysis; First Challenge, CAD Anja Hennemuth,Leonid Goubergrits,Jan-Martin Kuhni Conference proceedings 20

[復(fù)制鏈接]
樓主: Lampoon
21#
發(fā)表于 2025-3-25 04:31:41 | 只看該作者
22#
發(fā)表于 2025-3-25 08:14:30 | 只看該作者
23#
發(fā)表于 2025-3-25 14:58:05 | 只看該作者
https://doi.org/10.1007/978-3-658-42014-7U-Net, pretrained 3D U-Net and pretrained 3D Attention U-Net are 0.881, 0.884, 0.890 and 0.907, respectively. The experimental results show that the use of attention gate and Models Genesis can significantly improve the performance of U-Net model in segmenting aneurysms. This work achieved rank one in CADA 2020- Aneurysm Segmentation Challenge.
24#
發(fā)表于 2025-3-25 19:43:44 | 只看該作者
25#
發(fā)表于 2025-3-25 21:51:39 | 只看該作者
Heidi M?ller,Thomas Giernalczyksm. The proposed network was trained on the . challenge set of 109 aneurysms. The proposed method achieves an accuracy of 0.64 and an F2-score of 0.73 on the private . challenge test set of 30 aneurysms.
26#
發(fā)表于 2025-3-26 02:29:11 | 只看該作者
Deep Learning-Based 3D U-Net Cerebral Aneurysm Detectiont solutions, with a drastically reduced false-positive rate per patient. The described solution is almost entirely accurate on structures larger than 5?mm in diameter but shows difficulties with smaller aneurysms. We show an F2-score of 0.84 and a false-positive rate of 0.41 on a private test set.
27#
發(fā)表于 2025-3-26 06:43:15 | 只看該作者
3D Attention U-Net with Pretraining: A Solution to CADA-Aneurysm Segmentation ChallengeU-Net, pretrained 3D U-Net and pretrained 3D Attention U-Net are 0.881, 0.884, 0.890 and 0.907, respectively. The experimental results show that the use of attention gate and Models Genesis can significantly improve the performance of U-Net model in segmenting aneurysms. This work achieved rank one in CADA 2020- Aneurysm Segmentation Challenge.
28#
發(fā)表于 2025-3-26 10:59:19 | 只看該作者
CADA Challenge: Rupture Risk Assessment Using Computational Fluid Dynamicsults of the DNS may serve as inputs for data driven methods to identify qualitative maps of hemodynamic quantities in aneurysms. In this article we report the results of CFD and discuss hypotheses associating the flow characteristics with the rupture risk of aneurysms.
29#
發(fā)表于 2025-3-26 12:58:18 | 只看該作者
30#
發(fā)表于 2025-3-26 20:48:56 | 只看該作者
0302-9743 Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in October 2020. The conference was planned to take place in Lima, Peru, and took place virtually due to the COVID-19 pandemic. .The 9 regular papers presented in this volume, together with an overview and one in
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 12:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莎车县| 尉犁县| 澎湖县| 湟源县| 任丘市| 泰宁县| 乌拉特中旗| 广汉市| 翼城县| 喜德县| 隆昌县| 永济市| 同仁县| 普洱| 安宁市| 乌海市| 长汀县| 开江县| 平遥县| 托克托县| 武强县| 叶城县| 桃园县| 阿荣旗| 繁峙县| 巩留县| 芜湖市| 芒康县| 抚松县| 广州市| 海安县| 宜春市| 苗栗县| 昭平县| 涿鹿县| 鄂托克前旗| 班戈县| 孝感市| 江西省| 临颍县| 南康市|