找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cerebral Aneurysm Detection and Analysis; First Challenge, CAD Anja Hennemuth,Leonid Goubergrits,Jan-Martin Kuhni Conference proceedings 20

[復(fù)制鏈接]
查看: 39001|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:43:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Cerebral Aneurysm Detection and Analysis
副標(biāo)題First Challenge, CAD
編輯Anja Hennemuth,Leonid Goubergrits,Jan-Martin Kuhni
視頻videohttp://file.papertrans.cn/224/223279/223279.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Cerebral Aneurysm Detection and Analysis; First Challenge, CAD Anja Hennemuth,Leonid Goubergrits,Jan-Martin Kuhni Conference proceedings 20
描述.This book constitutes the First Cerebral Aneurysm Detection Challenge, CADA 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in October 2020. The conference was planned to take place in Lima, Peru, and took place virtually due to the COVID-19 pandemic. .The 9 regular papers presented in this volume, together with an overview and one introduction paper, were carefully reviewed and selected for inclusion in the book. The papers were organized in topical sections as follows: cerebral aneurysm detection; cerebral aneurysm segmentation; and cerebral aneurysm rupture risk estimation..
出版日期Conference proceedings 2021
關(guān)鍵詞3D imaging; artificial intelligence; computer graphics; computer systems; computer vision; deep learning;
版次1
doihttps://doi.org/10.1007/978-3-030-72862-5
isbn_softcover978-3-030-72861-8
isbn_ebook978-3-030-72862-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書(shū)目名稱Cerebral Aneurysm Detection and Analysis影響因子(影響力)




書(shū)目名稱Cerebral Aneurysm Detection and Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱Cerebral Aneurysm Detection and Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Cerebral Aneurysm Detection and Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Cerebral Aneurysm Detection and Analysis被引頻次




書(shū)目名稱Cerebral Aneurysm Detection and Analysis被引頻次學(xué)科排名




書(shū)目名稱Cerebral Aneurysm Detection and Analysis年度引用




書(shū)目名稱Cerebral Aneurysm Detection and Analysis年度引用學(xué)科排名




書(shū)目名稱Cerebral Aneurysm Detection and Analysis讀者反饋




書(shū)目名稱Cerebral Aneurysm Detection and Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:20:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:09:47 | 只看該作者
Deep Learning-Based 3D U-Net Cerebral Aneurysm Detection a death rate of roughly 40%, it is highly desirable to detect aneurysms early and decide about the appropriate rupture prevention strategy. Rotational X-ray angiography is a non-invasive imaging modality and enables diagnostics to detect cerebral aneurysms at an early stage..We propose a variation
地板
發(fā)表于 2025-3-22 05:34:22 | 只看該作者
5#
發(fā)表于 2025-3-22 09:00:25 | 只看該作者
6#
發(fā)表于 2025-3-22 14:22:04 | 只看該作者
3D Attention U-Net with Pretraining: A Solution to CADA-Aneurysm Segmentation Challengeatening. 3D images can provide abundant information for characterizing the aneurysm. But the traditional manual segmentation of aneurysms takes lots of time and effort. Therefore, accurate and rapid automatic algorithm for 3D segmentation of aneurysm is needed. U-Net is a widely used deep learning n
7#
發(fā)表于 2025-3-22 19:15:55 | 只看該作者
8#
發(fā)表于 2025-3-23 00:28:03 | 只看該作者
CADA Challenge: Rupture Risk Assessment Using Computational Fluid Dynamicsional methods. In this work we performed computational fluid dynamics (CFD) on a subset of aneurysm cases provided by the challenge committee. A large number of aneurysm cases were available, CFD analysis using the lattice Boltzmann method (LBM) were performed on 18 of them. These 18 aneurysms were
9#
發(fā)表于 2025-3-23 04:05:37 | 只看該作者
10#
發(fā)表于 2025-3-23 06:35:34 | 只看該作者
Intracranial Aneurysm Rupture Risk Estimation Utilizing Vessel-Graphs and Machine Learningt methods combine demographic, clinical, morphological, and computational fluid dynamics parameters..We propose a method combining morphological radiomics features, gray-level radiomics features, and a novel aneurysm site location encoding via directed graphs on the vessel tree. Some of the gray-lev
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 14:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴林左旗| 金塔县| 门源| 莱西市| 福建省| 游戏| 三亚市| 西乌珠穆沁旗| 广东省| 竹北市| 东乡县| 凤翔县| 宜川县| 蒙城县| 扶绥县| 甘孜| 乌拉特前旗| 沙河市| 来安县| 六枝特区| 嵊州市| 株洲市| 彭州市| 河曲县| 松原市| 南投县| 宁城县| 裕民县| 津市市| 赫章县| 伊吾县| 康马县| 双柏县| 静乐县| 赤峰市| 沈阳市| 乐都县| 喀喇| 中西区| 东丽区| 祁东县|