找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cerebral Aneurysm Detection and Analysis; First Challenge, CAD Anja Hennemuth,Leonid Goubergrits,Jan-Martin Kuhni Conference proceedings 20

[復(fù)制鏈接]
查看: 38997|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:43:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Cerebral Aneurysm Detection and Analysis
副標(biāo)題First Challenge, CAD
編輯Anja Hennemuth,Leonid Goubergrits,Jan-Martin Kuhni
視頻videohttp://file.papertrans.cn/224/223279/223279.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Cerebral Aneurysm Detection and Analysis; First Challenge, CAD Anja Hennemuth,Leonid Goubergrits,Jan-Martin Kuhni Conference proceedings 20
描述.This book constitutes the First Cerebral Aneurysm Detection Challenge, CADA 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in October 2020. The conference was planned to take place in Lima, Peru, and took place virtually due to the COVID-19 pandemic. .The 9 regular papers presented in this volume, together with an overview and one introduction paper, were carefully reviewed and selected for inclusion in the book. The papers were organized in topical sections as follows: cerebral aneurysm detection; cerebral aneurysm segmentation; and cerebral aneurysm rupture risk estimation..
出版日期Conference proceedings 2021
關(guān)鍵詞3D imaging; artificial intelligence; computer graphics; computer systems; computer vision; deep learning;
版次1
doihttps://doi.org/10.1007/978-3-030-72862-5
isbn_softcover978-3-030-72861-8
isbn_ebook978-3-030-72862-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Cerebral Aneurysm Detection and Analysis影響因子(影響力)




書目名稱Cerebral Aneurysm Detection and Analysis影響因子(影響力)學(xué)科排名




書目名稱Cerebral Aneurysm Detection and Analysis網(wǎng)絡(luò)公開度




書目名稱Cerebral Aneurysm Detection and Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Cerebral Aneurysm Detection and Analysis被引頻次




書目名稱Cerebral Aneurysm Detection and Analysis被引頻次學(xué)科排名




書目名稱Cerebral Aneurysm Detection and Analysis年度引用




書目名稱Cerebral Aneurysm Detection and Analysis年度引用學(xué)科排名




書目名稱Cerebral Aneurysm Detection and Analysis讀者反饋




書目名稱Cerebral Aneurysm Detection and Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:20:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:09:47 | 只看該作者
Deep Learning-Based 3D U-Net Cerebral Aneurysm Detection a death rate of roughly 40%, it is highly desirable to detect aneurysms early and decide about the appropriate rupture prevention strategy. Rotational X-ray angiography is a non-invasive imaging modality and enables diagnostics to detect cerebral aneurysms at an early stage..We propose a variation
地板
發(fā)表于 2025-3-22 05:34:22 | 只看該作者
5#
發(fā)表于 2025-3-22 09:00:25 | 只看該作者
6#
發(fā)表于 2025-3-22 14:22:04 | 只看該作者
3D Attention U-Net with Pretraining: A Solution to CADA-Aneurysm Segmentation Challengeatening. 3D images can provide abundant information for characterizing the aneurysm. But the traditional manual segmentation of aneurysms takes lots of time and effort. Therefore, accurate and rapid automatic algorithm for 3D segmentation of aneurysm is needed. U-Net is a widely used deep learning n
7#
發(fā)表于 2025-3-22 19:15:55 | 只看該作者
8#
發(fā)表于 2025-3-23 00:28:03 | 只看該作者
CADA Challenge: Rupture Risk Assessment Using Computational Fluid Dynamicsional methods. In this work we performed computational fluid dynamics (CFD) on a subset of aneurysm cases provided by the challenge committee. A large number of aneurysm cases were available, CFD analysis using the lattice Boltzmann method (LBM) were performed on 18 of them. These 18 aneurysms were
9#
發(fā)表于 2025-3-23 04:05:37 | 只看該作者
10#
發(fā)表于 2025-3-23 06:35:34 | 只看該作者
Intracranial Aneurysm Rupture Risk Estimation Utilizing Vessel-Graphs and Machine Learningt methods combine demographic, clinical, morphological, and computational fluid dynamics parameters..We propose a method combining morphological radiomics features, gray-level radiomics features, and a novel aneurysm site location encoding via directed graphs on the vessel tree. Some of the gray-lev
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 12:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汶上县| 双桥区| 绿春县| 宜城市| 介休市| 天气| 厦门市| 保德县| 自治县| 左权县| 体育| 济源市| 泗水县| 正镶白旗| 芜湖市| 镇坪县| 太原市| 商河县| 丹江口市| 县级市| 福建省| 朝阳市| 肥西县| 吉林省| 阿图什市| 南京市| 西华县| 静安区| 溧水县| 建宁县| 镇远县| 大同市| 永安市| 惠东县| 信阳市| 株洲县| 青冈县| 康平县| 泾阳县| 平江县| 兴和县|