找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calculus for Computer Graphics; John Vince Textbook 20131st edition Springer-Verlag London 2013 Calculus for Computer Animation.Calculus f

[復制鏈接]
樓主: hearken
31#
發(fā)表于 2025-3-27 00:59:56 | 只看該作者
https://doi.org/10.1007/BFb0034478 dividing a zone into very small strips and summing the individual areas. The accuracy of the result is improved simply by making the strips smaller and smaller, taking the result towards some limiting value. In this chapter I show how integral calculus provides a way to compute the area between a f
32#
發(fā)表于 2025-3-27 02:21:26 | 只看該作者
33#
發(fā)表于 2025-3-27 07:31:00 | 只看該作者
Key concepts in neural networks,to compute surface areas and regions bounded by functions. Also in this chapter, we come across Jacobians, which are used to convert an integral from one coordinate system to another. To start, let’s examine surfaces of revolution.
34#
發(fā)表于 2025-3-27 11:32:46 | 只看該作者
Neural networks and Markov chains,lution, where an object is cut into flat slices or concentric cylindrical shells and summed over the object’s extent using a single integral. The third technique employs two integrals where the first computes the area of a slice through a volume, and the second sums these areas over the object’s ext
35#
發(fā)表于 2025-3-27 15:46:09 | 只看該作者
36#
發(fā)表于 2025-3-27 20:59:00 | 只看該作者
Key concepts in neural networks,hy it works. Consequently, when I started writing this book I had clear objectives about what to include and what to leave out. Having reached this final chapter, I feel that I have achieved this objective. There have been moments when I was tempted to include more topics and more examples and turn
37#
發(fā)表于 2025-3-28 01:00:13 | 只看該作者
38#
發(fā)表于 2025-3-28 04:14:22 | 只看該作者
39#
發(fā)表于 2025-3-28 08:36:34 | 只看該作者
40#
發(fā)表于 2025-3-28 10:54:01 | 只看該作者
http://image.papertrans.cn/c/image/220871.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 20:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
阳江市| 登封市| 南陵县| 旌德县| 香格里拉县| 呈贡县| 襄汾县| 樟树市| 广元市| 隆林| 罗城| 东兰县| 桦川县| 河西区| 平乡县| 嘉黎县| 砀山县| 化德县| 嵊州市| 开化县| 视频| 沙坪坝区| 琼海市| 通许县| 乐业县| 长丰县| 天柱县| 龙泉市| 紫金县| 定西市| 嘉祥县| 沾化县| 久治县| 鲁山县| 云安县| 安吉县| 桃园县| 桂东县| 定日县| 阿合奇县| 宾阳县|