找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Calculus for Computer Graphics; John Vince Textbook 20131st edition Springer-Verlag London 2013 Calculus for Computer Animation.Calculus f

[復(fù)制鏈接]
樓主: hearken
41#
發(fā)表于 2025-3-28 15:13:26 | 只看該作者
Introduction,calculus. So called “infinitesimals” played a pivotal role in early calculus to determine tangents, area and volume. Incorporating incredibly small quantities (infinitesimals) into a numerical solution, means that products involving them can be ignored, whilst quotients are retained. The final solut
42#
發(fā)表于 2025-3-28 19:28:35 | 只看該作者
43#
發(fā)表于 2025-3-29 02:25:02 | 只看該作者
44#
發(fā)表于 2025-3-29 06:36:57 | 只看該作者
Higher Derivatives,e higher derivatives resolve local minimum and maximum conditions; and the third section provides a physical interpretation for these derivatives. Let’s begin by finding the higher derivatives of simple polynomials.
45#
發(fā)表于 2025-3-29 09:04:31 | 只看該作者
46#
發(fā)表于 2025-3-29 13:53:02 | 只看該作者
Arc Length,ed to compute the arc length of a continuous function. However, although the formula for the arc length results in a simple integrand, it is not always easy to integrate, and other numerical techniques have to be used. In order to compute a function’s arc length using integration, we first need to u
47#
發(fā)表于 2025-3-29 15:49:02 | 只看該作者
48#
發(fā)表于 2025-3-29 21:37:13 | 只看該作者
Volume,lution, where an object is cut into flat slices or concentric cylindrical shells and summed over the object’s extent using a single integral. The third technique employs two integrals where the first computes the area of a slice through a volume, and the second sums these areas over the object’s ext
49#
發(fā)表于 2025-3-30 03:55:11 | 只看該作者
50#
發(fā)表于 2025-3-30 07:10:55 | 只看該作者
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 22:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚宁县| 靖宇县| 遂平县| 马鞍山市| 石景山区| 凤凰县| 望奎县| 兴业县| 湘潭市| 清镇市| 台东市| 加查县| 宣恩县| 岱山县| 彭山县| 营山县| 定远县| 同德县| 富蕴县| 宁乡县| 高雄市| 荆门市| 抚顺市| 堆龙德庆县| 句容市| 璧山县| 三门县| 儋州市| 荆门市| 东兴市| 河东区| 航空| 泰顺县| 宜宾县| 永靖县| 黄梅县| 广水市| 汨罗市| 理塘县| 龙口市| 桂平市|