找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Attractors for infinite-dimensional non-autonomous dynamical systems; Alexandre N. Carvalho,José A. Langa,James C. Robin Book 2013 Springe

[復(fù)制鏈接]
樓主: Exacting
51#
發(fā)表于 2025-3-30 09:44:18 | 只看該作者
Book 2013 of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. ..The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to
52#
發(fā)表于 2025-3-30 15:48:35 | 只看該作者
53#
發(fā)表于 2025-3-30 17:26:04 | 只看該作者
Francisco Ciruela,Víctor Fernández-Due?asorollary 12.6) will play an essential role in our analysis, and we will be able to prove the existence of maximal and minimal bounded global solutions, ξ.( ?) and ξ.( ?), which provide ‘bounds’ on the asymptotic dynamics of the system, i.e. any bounded global solution ψ( ?) satisfies
54#
發(fā)表于 2025-3-31 00:12:52 | 只看該作者
55#
發(fā)表于 2025-3-31 03:49:48 | 只看該作者
Chenyi Liao,Victor May,Jianing Lins and uniformly .: . Note that while this uniform attractor is a fixed subset of the phase space and is ‘a(chǎn)ttracting’, one cannot speak of the ‘dynamics on the uniform attractor’. The property of invariance of the global or non-autonomous attractor has been replaced by minimality (Definition 16.8).
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 06:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
文山县| 宜丰县| 县级市| 微博| 黄骅市| 聂荣县| 汉寿县| 遵义县| 清水县| 临邑县| 孝昌县| 阿荣旗| 改则县| 重庆市| 阿鲁科尔沁旗| 吉隆县| 如皋市| 湖州市| 太保市| 海盐县| 呼图壁县| 黄梅县| 紫云| 静安区| 醴陵市| 建德市| 和平县| 五台县| 繁昌县| 象州县| 威信县| 武邑县| 榆中县| 西贡区| 五莲县| 荣成市| 广水市| 安多县| 金昌市| 丘北县| 江北区|