找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractors for infinite-dimensional non-autonomous dynamical systems; Alexandre N. Carvalho,José A. Langa,James C. Robin Book 2013 Springe

[復(fù)制鏈接]
查看: 47709|回復(fù): 54
樓主
發(fā)表于 2025-3-21 18:58:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Attractors for infinite-dimensional non-autonomous dynamical systems
影響因子2023Alexandre N. Carvalho,José A. Langa,James C. Robin
視頻videohttp://file.papertrans.cn/165/164915/164915.mp4
發(fā)行地址Obtains new results on the characterization of global attractors for processes and their perturbations.An up-to-date summary of the field.Includes supplementary material:
學(xué)科分類Applied Mathematical Sciences
圖書封面Titlebook: Attractors for infinite-dimensional non-autonomous dynamical systems;  Alexandre N. Carvalho,José A. Langa,James C. Robin Book 2013 Springe
影響因子.The book treats the theory of attractors for non-autonomous dynamical systems. The aim of the book is to give a coherent account of the current state of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. ..The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply..
Pindex Book 2013
The information of publication is updating

書目名稱Attractors for infinite-dimensional non-autonomous dynamical systems影響因子(影響力)




書目名稱Attractors for infinite-dimensional non-autonomous dynamical systems影響因子(影響力)學(xué)科排名




書目名稱Attractors for infinite-dimensional non-autonomous dynamical systems網(wǎng)絡(luò)公開度




書目名稱Attractors for infinite-dimensional non-autonomous dynamical systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Attractors for infinite-dimensional non-autonomous dynamical systems被引頻次




書目名稱Attractors for infinite-dimensional non-autonomous dynamical systems被引頻次學(xué)科排名




書目名稱Attractors for infinite-dimensional non-autonomous dynamical systems年度引用




書目名稱Attractors for infinite-dimensional non-autonomous dynamical systems年度引用學(xué)科排名




書目名稱Attractors for infinite-dimensional non-autonomous dynamical systems讀者反饋




書目名稱Attractors for infinite-dimensional non-autonomous dynamical systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:03:15 | 只看該作者
G Protein Signaling Mechanisms in the Retinae aim of this chapter is to introduce the ‘pullback attractor’, which seems to be the correct generalisation of this concept for use with non-autonomous processes. We pay particular attention to how this non-autonomous definition relates to the autonomous one.
板凳
發(fā)表于 2025-3-22 03:35:44 | 只看該作者
地板
發(fā)表于 2025-3-22 06:18:36 | 只看該作者
5#
發(fā)表于 2025-3-22 10:58:17 | 只看該作者
6#
發(fā)表于 2025-3-22 15:06:53 | 只看該作者
Methods in Pharmacology and Toxicologyr an abstract process .( ?, ?) on a Banach space .. Such results are the main ingredient required to apply the lower semicontinuity results for global and pullback attractors like Theorems 3.8 and 3.11 from Chap. 3 and Theorems 5.26 and 5.36 from Chap. 5.
7#
發(fā)表于 2025-3-22 18:53:08 | 只看該作者
8#
發(fā)表于 2025-3-23 01:12:29 | 只看該作者
Adi Raveh,Liora Guy-David,Eitan Reuveny be used to investigate the behaviour of such models. In particular, following the ideas in the preceding chapters we are able to compare the dynamics of systems of ordinary differential equations with that of the same system with a small delay and show that the associated attractors are upper semicontinuous as the delay tends to zero.
9#
發(fā)表于 2025-3-23 03:18:43 | 只看該作者
10#
發(fā)表于 2025-3-23 07:38:19 | 只看該作者
978-1-4899-9176-8Springer Science+Business Media, LLC 2013
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 06:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聊城市| 健康| 西林县| 逊克县| 宝坻区| 东乌珠穆沁旗| 卢氏县| 信阳市| 韶山市| 大埔县| 郁南县| 禄丰县| 哈密市| 四川省| 防城港市| 合肥市| 宜兰市| 武川县| 昆山市| 尚义县| 凤凰县| 韶关市| 马尔康县| 竹溪县| 宁明县| 交城县| 宿松县| 蒙山县| 福海县| 达拉特旗| 静海县| 无锡市| 平南县| 五莲县| 玉林市| 浠水县| 施甸县| 韩城市| 囊谦县| 西宁市| 娱乐|