找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractors for infinite-dimensional non-autonomous dynamical systems; Alexandre N. Carvalho,José A. Langa,James C. Robin Book 2013 Springe

[復(fù)制鏈接]
樓主: Exacting
41#
發(fā)表于 2025-3-28 16:25:19 | 只看該作者
G Protein-Coupled Receptor Screening Assaysear underlying structure (like a Lyapunov function, for example), the application of the more ‘global’ results of these two chapters (existence of a finite-dimensional pullback attractor) is essentially as far as one can currently proceed.
42#
發(fā)表于 2025-3-28 21:59:14 | 只看該作者
43#
發(fā)表于 2025-3-29 01:31:56 | 只看該作者
44#
發(fā)表于 2025-3-29 06:19:53 | 只看該作者
45#
發(fā)表于 2025-3-29 08:56:15 | 只看該作者
The Navier–Stokes equations with non-autonomous forcingear underlying structure (like a Lyapunov function, for example), the application of the more ‘global’ results of these two chapters (existence of a finite-dimensional pullback attractor) is essentially as far as one can currently proceed.
46#
發(fā)表于 2025-3-29 13:50:05 | 只看該作者
47#
發(fā)表于 2025-3-29 18:13:24 | 只看該作者
48#
發(fā)表于 2025-3-29 21:03:43 | 只看該作者
49#
發(fā)表于 2025-3-30 00:01:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:20:35 | 只看該作者
Appendix: Skew-product flows and the uniform attractorns and uniformly .: . Note that while this uniform attractor is a fixed subset of the phase space and is ‘a(chǎn)ttracting’, one cannot speak of the ‘dynamics on the uniform attractor’. The property of invariance of the global or non-autonomous attractor has been replaced by minimality (Definition 16.8).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 06:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浏阳市| 永顺县| 寿光市| 武义县| 灵寿县| 东源县| 高青县| 寿阳县| 乃东县| 和静县| 清原| 荣成市| 响水县| 沧源| 凭祥市| 柘城县| 临洮县| 东平县| 平湖市| 三江| 黄冈市| 绥芬河市| 荆州市| 大兴区| 襄城县| 琼结县| 石林| 洛宁县| 贵南县| 昭平县| 凌海市| 宝兴县| 孟村| 北辰区| 响水县| 潜山县| 龙川县| 浏阳市| 仙桃市| 泸溪县| 玉山县|