找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis as a Life; Dedicated to Heinric Sergei Rogosin,Ahmet Okay ?elebi Book 2019 Springer Nature Switzerland AG 2019 complex differentia

[復(fù)制鏈接]
樓主: 吞食
41#
發(fā)表于 2025-3-28 16:33:44 | 只看該作者
42#
發(fā)表于 2025-3-28 19:17:15 | 只看該作者
https://doi.org/10.1007/978-3-658-34563-1rive integral representations for functions in .. This unified method provides representations which are suitable to be employed in discussions for all linear boundary value problems. In the rest of the article we have improved some results obtained for Schwarz and Dirichlet type problems.
43#
發(fā)表于 2025-3-29 01:39:57 | 只看該作者
44#
發(fā)表于 2025-3-29 07:06:25 | 只看該作者
45#
發(fā)表于 2025-3-29 08:45:49 | 只看該作者
46#
發(fā)表于 2025-3-29 12:27:19 | 只看該作者
Stefan Meinhardt,Alexander Pflaum{.., ..} satisfying the conditions ., .. The algebra . is associated with the biharmonic equation, and considered problems have relations to the plane elasticity. We develop methods of its solving which are based on expressions of solutions by hypercomplex integrals analogous to the classic Schwartz
47#
發(fā)表于 2025-3-29 18:45:14 | 只看該作者
Digitale Gesch?ftsmodelle – Band 1 bracket is applied to the conformal map itself together with its conformally reflected map the result is identically one. This is called the string equation, and it is closely connected to the governing equation, the Polubarinova-Galin equation, for the evolution of a Hele-Shaw blob of a viscous fl
48#
發(fā)表于 2025-3-29 21:48:32 | 只看該作者
Digitale Gesch?ftsmodelle – Band 1 with .. coefficients on Lipschitz domains in .. Then the solution of the exterior Dirichlet problem for the Stokes system with .. coefficients is presented in terms of these potentials and the inverse of the corresponding single layer operator.
49#
發(fā)表于 2025-3-30 03:03:45 | 只看該作者
50#
發(fā)表于 2025-3-30 07:24:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长岭县| 郧西县| 桐柏县| 临邑县| 台中市| 闵行区| 张家港市| 建湖县| 板桥市| 青岛市| 南投市| 浦县| 太保市| 嘉祥县| 通海县| 防城港市| 康保县| 宜阳县| 布拖县| 张北县| 苏尼特左旗| 丁青县| 泊头市| 沂南县| 电白县| 西和县| 承德县| 灵寿县| 陆河县| 望江县| 蒙城县| 巴东县| 腾冲县| 如东县| 象山县| 盱眙县| 博乐市| 贵南县| 靖远县| 游戏| 昌江|