找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis as a Life; Dedicated to Heinric Sergei Rogosin,Ahmet Okay ?elebi Book 2019 Springer Nature Switzerland AG 2019 complex differentia

[復(fù)制鏈接]
樓主: 吞食
21#
發(fā)表于 2025-3-25 04:06:59 | 只看該作者
https://doi.org/10.1007/978-3-658-21161-5icci flows, we present an iterative process which converges exponentially fast to radii of circle patterns in the Euclidean and hyperbolic planes. This provides a new and effective method to find the radii of circle patterns.
22#
發(fā)表于 2025-3-25 09:21:24 | 只看該作者
23#
發(fā)表于 2025-3-25 13:30:06 | 只看該作者
24#
發(fā)表于 2025-3-25 19:01:48 | 只看該作者
Gesch?ftsmodellmuster mit 3D-Druck für KMUIn this paper we consider so called Beltrami parametrization of Riemann surfaces and show that the Riemann-Hilbert boundary value problem with shift is equivalent to classical Riemann-Hilbert boundary value problem with respect to the complex structures defined by Beltrami parametrization induced from shift operator.
25#
發(fā)表于 2025-3-25 20:44:57 | 只看該作者
Micha Bosler,Wolfgang Burr,Leonie IhringThis is a survey paper describing the method of special functions for Fractional Calculus. We outline the main properties of special functions which are important for fractional analysis and fractional modeling. Main attention is paid to the functions of the Mittag-Leffler family and close to it the Wright functions.
26#
發(fā)表于 2025-3-26 01:28:15 | 只看該作者
27#
發(fā)表于 2025-3-26 07:52:31 | 只看該作者
Deformation of Complex Structures and Boundary Value Problem with Shift,In this paper we consider so called Beltrami parametrization of Riemann surfaces and show that the Riemann-Hilbert boundary value problem with shift is equivalent to classical Riemann-Hilbert boundary value problem with respect to the complex structures defined by Beltrami parametrization induced from shift operator.
28#
發(fā)表于 2025-3-26 08:54:35 | 只看該作者
Special Functions Method for Fractional Analysis and Fractional Modeling,This is a survey paper describing the method of special functions for Fractional Calculus. We outline the main properties of special functions which are important for fractional analysis and fractional modeling. Main attention is paid to the functions of the Mittag-Leffler family and close to it the Wright functions.
29#
發(fā)表于 2025-3-26 14:50:38 | 只看該作者
Real Variable Inverse Laplace Transform,The aim of this work is to provide a review of authors’ contributions to the field of the Laplace transform in the last 20 years.
30#
發(fā)表于 2025-3-26 17:59:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘潭县| 忻州市| 浦江县| 崇礼县| 拜泉县| 永嘉县| 武鸣县| 绥棱县| 青浦区| 阳谷县| 封丘县| 英山县| 沈丘县| 图木舒克市| 西藏| 宜城市| 梅河口市| 安新县| 昌吉市| 松滋市| 朝阳区| 亚东县| 彰武县| 建水县| 曲靖市| 齐河县| 和静县| 轮台县| 凤台县| 桓仁| 屏山县| 永康市| 佳木斯市| 米林县| 星座| 鄂托克前旗| 新巴尔虎左旗| 新津县| 武威市| 太原市| 广丰县|