找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis as a Life; Dedicated to Heinric Sergei Rogosin,Ahmet Okay ?elebi Book 2019 Springer Nature Switzerland AG 2019 complex differentia

[復制鏈接]
樓主: 吞食
31#
發(fā)表于 2025-3-27 00:02:35 | 只看該作者
Boundary Eigenvalues of Pluriharmonic Functions for the Third Boundary Condition on the Unit Polydiown that in the case of eigenvalue, for each eigenvalue, there are multiple eigenfunctions. Compatibility and solvability conditions are also studied for the case of inhomogeneous third boundary condition.
32#
發(fā)表于 2025-3-27 02:07:17 | 只看該作者
33#
發(fā)表于 2025-3-27 06:10:25 | 只看該作者
A Circle Pattern Algorithm via Combinatorial Ricci Flows,icci flows, we present an iterative process which converges exponentially fast to radii of circle patterns in the Euclidean and hyperbolic planes. This provides a new and effective method to find the radii of circle patterns.
34#
發(fā)表于 2025-3-27 09:54:37 | 只看該作者
Schwartz-Type Boundary Value Problems for Monogenic Functions in a Biharmonic Algebra,{.., ..} satisfying the conditions ., .. The algebra . is associated with the biharmonic equation, and considered problems have relations to the plane elasticity. We develop methods of its solving which are based on expressions of solutions by hypercomplex integrals analogous to the classic Schwartz and Cauchy integrals.
35#
發(fā)表于 2025-3-27 14:27:12 | 只看該作者
36#
發(fā)表于 2025-3-27 21:26:43 | 只看該作者
Book 2019te to the excellent achievements of Heinrich Begehr in complex analysis and complex differential equations, and especially to his prominent role as one of the creators and long-time leader of the International Society for Analysis, its Applications and Computation (ISAAC)..
37#
發(fā)表于 2025-3-28 00:38:16 | 只看該作者
38#
發(fā)表于 2025-3-28 04:45:36 | 只看該作者
Springer Nature Switzerland AG 2019
39#
發(fā)表于 2025-3-28 09:04:44 | 只看該作者
Gesch?ftsmodellmuster mit 3D-Druck für KMUth respect to the Laplacian in the complex Clifford algebra . for .?≥?3. Iterating the Green type kernel function, representation of the solution of the bi-Poisson equation with homogeneous Dirichlet condition is presented.
40#
發(fā)表于 2025-3-28 10:50:20 | 只看該作者
https://doi.org/10.1007/978-3-658-25162-8own that in the case of eigenvalue, for each eigenvalue, there are multiple eigenfunctions. Compatibility and solvability conditions are also studied for the case of inhomogeneous third boundary condition.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
大港区| 桃源县| 丹凤县| 鹤峰县| 巩义市| 贡觉县| 甘孜县| 海阳市| 万源市| 石门县| 永胜县| 黄石市| 固安县| 当雄县| 齐河县| 宜兰市| 太谷县| 宁晋县| 炉霍县| 双辽市| 奎屯市| 灵川县| 永清县| 顺昌县| 囊谦县| 咸阳市| 民权县| 乌兰县| 鄂托克前旗| 思南县| 昌黎县| 光山县| 邵东县| 丹江口市| 江口县| 呼和浩特市| 夏邑县| 清远市| 南宁市| 本溪| 六安市|