找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Manifolds; Loring W. Tu Textbook 2008Latest edition Springer-Verlag New York 2008 Algebraic topology.De Rham cohomology

[復(fù)制鏈接]
樓主: 爆發(fā)
11#
發(fā)表于 2025-3-23 09:58:01 | 只看該作者
12#
發(fā)表于 2025-3-23 13:56:02 | 只看該作者
13#
發(fā)表于 2025-3-23 21:02:32 | 只看該作者
,Die ideale moderne Universit?t,Intuitively, a manifold is a generalization of curves and surfaces to arbitrary dimension. While there are many different kinds of manifolds—topological manifolds, .-manifolds, analytic manifolds, and complex manifolds, in this book we are concerned mainly with smooth manifolds.
14#
發(fā)表于 2025-3-23 22:55:01 | 只看該作者
,Die ideale moderne Universit?t,Using coordinate charts we can transfer the notion of differentiability from R. to a smooth manifold ..
15#
發(fā)表于 2025-3-24 05:11:08 | 只看該作者
16#
發(fā)表于 2025-3-24 09:25:55 | 只看該作者
Die Universit?ts-Hautklinik MünsterIn this chapter we analyze the local structure of a smooth map on the basis of its rank. Recall that the rank of a smooth map . : . → . at a point . ∈ . is the rank of its differential at .. Two cases are of special interest: when the map . has maximal rank at a point or constant rank in a neighborhood. Let . = dim . and . = dim..
17#
發(fā)表于 2025-3-24 12:22:01 | 只看該作者
Anlagebedingte HauterkrankungenCertain manifolds such as the circle have in addition to their . structure also a group structure; moreover, the group operations are .∞. Manifolds such as these are called Lie groups. This chapter is a compendium of a few important examples of Lie groups, the ..
18#
發(fā)表于 2025-3-24 18:46:24 | 只看該作者
19#
發(fā)表于 2025-3-24 21:36:37 | 只看該作者
Alternating k-Linear FunctionsThis chapter is purely algebraic. Its purpose is to develop the properties of alternating .-linear functions on a vector space for later application to the tangent space at a point of a manifold.
20#
發(fā)表于 2025-3-25 00:21:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 22:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安平县| 梨树县| 汝阳县| 玉环县| 永州市| 丹巴县| 康平县| 逊克县| 慈利县| 齐河县| 四川省| 城步| 普洱| 辰溪县| 石林| 柳林县| 昭觉县| 双鸭山市| 云浮市| 沽源县| 项城市| 闽清县| 汉源县| 繁昌县| 宣汉县| 阳泉市| 鞍山市| 濮阳市| 林西县| 新民市| 留坝县| 屯昌县| 精河县| 同江市| 文化| 昌江| 祥云县| 九龙坡区| 兰西县| 云南省| 衡阳县|