找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Manifolds; Loring W. Tu Textbook 2008Latest edition Springer-Verlag New York 2008 Algebraic topology.De Rham cohomology

[復(fù)制鏈接]
樓主: 爆發(fā)
21#
發(fā)表于 2025-3-25 03:56:24 | 只看該作者
ManifoldsIntuitively, a manifold is a generalization of curves and surfaces to arbitrary dimension. While there are many different kinds of manifolds—topological manifolds, .-manifolds, analytic manifolds, and complex manifolds, in this book we are concerned mainly with smooth manifolds.
22#
發(fā)表于 2025-3-25 11:12:43 | 只看該作者
Smooth Maps on a ManifoldUsing coordinate charts we can transfer the notion of differentiability from R. to a smooth manifold ..
23#
發(fā)表于 2025-3-25 14:50:58 | 只看該作者
24#
發(fā)表于 2025-3-25 16:13:57 | 只看該作者
25#
發(fā)表于 2025-3-26 00:02:46 | 只看該作者
Lie GroupsCertain manifolds such as the circle have in addition to their . structure also a group structure; moreover, the group operations are .∞. Manifolds such as these are called Lie groups. This chapter is a compendium of a few important examples of Lie groups, the ..
26#
發(fā)表于 2025-3-26 00:26:26 | 只看該作者
27#
發(fā)表于 2025-3-26 07:26:54 | 只看該作者
Textbook 2008Latest edition are provided to many of the exercises and problems...This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, Introduction to Manifolds is also an excellent found
28#
發(fā)表于 2025-3-26 11:41:36 | 只看該作者
Bump Functions and Partitions of Unity the behavior of . manifolds so different from real-analytic or complex manifolds. In this chapter we construct . bump functions on any manifold and prove the existence of a .∞ partition of unity on a compact manifold. The proof of the existence of a . partition of unity on a general manifold is mor
29#
發(fā)表于 2025-3-26 14:32:01 | 只看該作者
Rahul De,Aaromal DCruz held in 2009.The papers presented at this symposium comprisThe seventh symposium on “Nutritional Aspects of Osteoporosis” continues to be the primary forum for scientists to focus on the impact of nutrition on bone health in general. Since 1991, the year of the frst symposium, research in this feld
30#
發(fā)表于 2025-3-26 18:05:37 | 只看該作者
Céline Goujon,Blanche Dalloz-Dubrujeaud,Nathalie Thomasrlebt hat, erkennt man, fern von modischer Technikfeindlichkeit und romantischer Verkl?rung früherer Zust?nde, die zunehmende Zahl von tiefgreifenden ?rztlichen Konfliktsituationen. “ Die hier von dem Chirurgen Wachsmuth.) thematisierte grunds?tzliche Lage der modernen Medizin in einer durch Naturwi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 22:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永登县| 万安县| 彩票| 阜宁县| 乐清市| 尉氏县| 蒙山县| 夏津县| 城市| 密云县| 西畴县| 丹江口市| 洮南市| 榕江县| 秦皇岛市| 澜沧| 波密县| 汉寿县| 武宣县| 永年县| 桃江县| 潮州市| 合阳县| 三明市| 凤山市| 湖州市| 柞水县| 汉中市| 布尔津县| 会昌县| 延寿县| 文昌市| 丹棱县| 马关县| 清丰县| 潍坊市| 贵阳市| 嵩明县| 永寿县| 罗平县| 偃师市|